Cargando…
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks
Predicting not only the target but also an accurate measure of uncertainty is important for many machine learning applications, and in particular, safety-critical ones. In this work, we study the calibration of uncertainty prediction for regression tasks which often arise in real-world systems. We s...
Autores principales: | Levi, Dan, Gispan, Liran, Giladi, Niv, Fetaya, Ethan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330317/ https://www.ncbi.nlm.nih.gov/pubmed/35898047 http://dx.doi.org/10.3390/s22155540 |
Ejemplares similares
-
Uncertainty and Dimensional Calibrations
por: Doiron, Ted, et al.
Publicado: (1997) -
Closed-Loop Uncertainty: The Evaluation and Calibration of Uncertainty for Human–Machine Teams under Data Drift
por: Bishof, Zachary, et al.
Publicado: (2023) -
Calibrating violence risk assessments for uncertainty
por: Connors, Michael H, et al.
Publicado: (2023) -
Optical Consequences Of An Uncertainty On The Energy Calibration
por: Koutchouk, Jean-Pierre
Publicado: (1991) -
Similarity-based pairing improves efficiency of siamese neural networks for regression tasks and uncertainty quantification
por: Zhang, Yumeng, et al.
Publicado: (2023)