Cargando…

The Composites of Polyamide 12 and Metal Oxides with High Antimicrobial Activity

The lack of resistance of plastic objects to various pathogens and their increasing activity in our daily life have made researchers develop polymeric materials with biocidal properties. Hence, this paper describes the thermoplastic composites of Polyamide 12 mixed with 1–5 wt % of the nanoparticles...

Descripción completa

Detalles Bibliográficos
Autores principales: Latko-Durałek, Paulina, Misiak, Michał, Staniszewska, Monika, Rosłoniec, Karina, Grodzik, Marta, Socha, Robert P., Krzan, Marcel, Bażanów, Barbara, Pogorzelska, Aleksandra, Boczkowska, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330415/
https://www.ncbi.nlm.nih.gov/pubmed/35893987
http://dx.doi.org/10.3390/polym14153025
Descripción
Sumario:The lack of resistance of plastic objects to various pathogens and their increasing activity in our daily life have made researchers develop polymeric materials with biocidal properties. Hence, this paper describes the thermoplastic composites of Polyamide 12 mixed with 1–5 wt % of the nanoparticles of zinc, copper, and titanium oxides prepared by a twin-screw extrusion process and injection moulding. A satisfactory biocidal activity of polyamide 12 nanocomposites was obtained thanks to homogenously dispersed metal oxides in the polymer matrix and the wettability of the metal oxides by PA12. At 4 wt % of the metal oxides, the contact angles were the lowest and it resulted in obtaining the highest reduction rate of the Escherichia coli (87%), Candida albicans (53%), and Herpes simplex 1 (90%). The interactions of the nanocomposites with the fibroblasts show early apoptosis (11.85–27.79%), late apoptosis (0.81–5.04%), and necrosis (0.18–0.31%), which confirms the lack of toxicity of used metal oxides. Moreover, the used oxides affect slightly the thermal and rheological properties of PA12, which was determined by oscillatory rheology, thermogravimetric analysis, and differential scanning calorimetry.