Cargando…
Deep Segmentation Networks for Segmenting Kidneys and Detecting Kidney Stones in Unenhanced Abdominal CT Images
Recent breakthroughs of deep learning algorithms in medical imaging, automated detection, and segmentation techniques for renal (kidney) in abdominal computed tomography (CT) images have been limited. Radiomics and machine learning analyses of renal diseases rely on the automatic segmentation of kid...
Autores principales: | Li, Dan, Xiao, Chuda, Liu, Yang, Chen, Zhuo, Hassan, Haseeb, Su, Liyilei, Liu, Jun, Li, Haoyu, Xie, Weiguo, Zhong, Wen, Huang, Bingding |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330428/ https://www.ncbi.nlm.nih.gov/pubmed/35892498 http://dx.doi.org/10.3390/diagnostics12081788 |
Ejemplares similares
-
Deep Learning Applications in Computed Tomography Images for Pulmonary Nodule Detection and Diagnosis: A Review
por: Li, Rui, et al.
Publicado: (2022) -
Comparison of kidney densities of cases with urinary dilatation in unenhanced CT scan
por: Yeniçeri, Önder, et al.
Publicado: (2019) -
Active learning for accuracy enhancement of semantic segmentation with CNN-corrected label curations: Evaluation on kidney segmentation in abdominal CT
por: Kim, Taehun, et al.
Publicado: (2020) -
Design and Validation of a Deep Learning Model for Renal Stone Detection and Segmentation on Kidney–Ureter–Bladder Images
por: Huang, Zih-Hao, et al.
Publicado: (2023) -
Diagnostic accuracy of ultrasonography compared to unenhanced CT for stone and obstruction in patients with renal failure
por: Ather, M Hammad, et al.
Publicado: (2004)