Cargando…
Bioactive Nitrosylated and Nitrated N-(2-hydroxyphenyl)acetamides and Derived Oligomers: An Alternative Pathway to 2-Amidophenol-Derived Phytotoxic Metabolites
Incubation of Aminobacter aminovorans, Paenibacillus polymyxa, and Arthrobacter MPI764 with the microbial 2-benzoxazolinone (BOA)-degradation-product 2-acetamido-phenol, produced from 2-aminophenol, led to the recently identified N-(2-hydroxy-5-nitrophenyl) acetamide, to the hitherto unknown N-(2-hy...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330447/ https://www.ncbi.nlm.nih.gov/pubmed/35897961 http://dx.doi.org/10.3390/molecules27154786 |
_version_ | 1784758163191365632 |
---|---|
author | Girel, Sergey Schütz, Vadim Bigler, Laurent Dörmann, Peter Schulz, Margot |
author_facet | Girel, Sergey Schütz, Vadim Bigler, Laurent Dörmann, Peter Schulz, Margot |
author_sort | Girel, Sergey |
collection | PubMed |
description | Incubation of Aminobacter aminovorans, Paenibacillus polymyxa, and Arthrobacter MPI764 with the microbial 2-benzoxazolinone (BOA)-degradation-product 2-acetamido-phenol, produced from 2-aminophenol, led to the recently identified N-(2-hydroxy-5-nitrophenyl) acetamide, to the hitherto unknown N-(2-hydroxy-5-nitrosophenyl)acetamide, and to N-(2-hydroxy-3-nitrophenyl)acetamide. As an alternative to the formation of phenoxazinone derived from aminophenol, dimers- and trimers-transformation products have been found. Identification of the compounds was carried out by LC/HRMS and MS/MS and, for the new structure N-(2-hydroxy-5-nitrosophenyl)acetamide, additionally by 1D- and 2D-NMR. Incubation of microorganisms, such as the soil bacteria Pseudomonas laurentiana, Arthrobacter MPI763, the yeast Papiliotrema baii and Pantoea ananatis, and the plants Brassica oleracea var. gongylodes L. (kohlrabi) and Arabidopsis thaliana Col-0, with N-(2-hydroxy-5-nitrophenyl) acetamide, led to its glucoside derivative as a prominent detoxification product; in the case of Pantoea ananatis, this was together with the corresponding glucoside succinic acid ester. In contrast, Actinomucor elegans consortium synthesized 2-acetamido-4-nitrophenyl sulfate. 1 mM bioactive N-(2-hydroxy-5-nitrophenyl) acetamide elicits alterations in the Arabidopsis thaliana expression profile of several genes. The most responsive upregulated gene was pathogen-inducible terpene synthase TPS04. The bioactivity of the compound is rapidly annihilated by glucosylation. |
format | Online Article Text |
id | pubmed-9330447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93304472022-07-29 Bioactive Nitrosylated and Nitrated N-(2-hydroxyphenyl)acetamides and Derived Oligomers: An Alternative Pathway to 2-Amidophenol-Derived Phytotoxic Metabolites Girel, Sergey Schütz, Vadim Bigler, Laurent Dörmann, Peter Schulz, Margot Molecules Article Incubation of Aminobacter aminovorans, Paenibacillus polymyxa, and Arthrobacter MPI764 with the microbial 2-benzoxazolinone (BOA)-degradation-product 2-acetamido-phenol, produced from 2-aminophenol, led to the recently identified N-(2-hydroxy-5-nitrophenyl) acetamide, to the hitherto unknown N-(2-hydroxy-5-nitrosophenyl)acetamide, and to N-(2-hydroxy-3-nitrophenyl)acetamide. As an alternative to the formation of phenoxazinone derived from aminophenol, dimers- and trimers-transformation products have been found. Identification of the compounds was carried out by LC/HRMS and MS/MS and, for the new structure N-(2-hydroxy-5-nitrosophenyl)acetamide, additionally by 1D- and 2D-NMR. Incubation of microorganisms, such as the soil bacteria Pseudomonas laurentiana, Arthrobacter MPI763, the yeast Papiliotrema baii and Pantoea ananatis, and the plants Brassica oleracea var. gongylodes L. (kohlrabi) and Arabidopsis thaliana Col-0, with N-(2-hydroxy-5-nitrophenyl) acetamide, led to its glucoside derivative as a prominent detoxification product; in the case of Pantoea ananatis, this was together with the corresponding glucoside succinic acid ester. In contrast, Actinomucor elegans consortium synthesized 2-acetamido-4-nitrophenyl sulfate. 1 mM bioactive N-(2-hydroxy-5-nitrophenyl) acetamide elicits alterations in the Arabidopsis thaliana expression profile of several genes. The most responsive upregulated gene was pathogen-inducible terpene synthase TPS04. The bioactivity of the compound is rapidly annihilated by glucosylation. MDPI 2022-07-26 /pmc/articles/PMC9330447/ /pubmed/35897961 http://dx.doi.org/10.3390/molecules27154786 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Girel, Sergey Schütz, Vadim Bigler, Laurent Dörmann, Peter Schulz, Margot Bioactive Nitrosylated and Nitrated N-(2-hydroxyphenyl)acetamides and Derived Oligomers: An Alternative Pathway to 2-Amidophenol-Derived Phytotoxic Metabolites |
title | Bioactive Nitrosylated and Nitrated N-(2-hydroxyphenyl)acetamides and Derived Oligomers: An Alternative Pathway to 2-Amidophenol-Derived Phytotoxic Metabolites |
title_full | Bioactive Nitrosylated and Nitrated N-(2-hydroxyphenyl)acetamides and Derived Oligomers: An Alternative Pathway to 2-Amidophenol-Derived Phytotoxic Metabolites |
title_fullStr | Bioactive Nitrosylated and Nitrated N-(2-hydroxyphenyl)acetamides and Derived Oligomers: An Alternative Pathway to 2-Amidophenol-Derived Phytotoxic Metabolites |
title_full_unstemmed | Bioactive Nitrosylated and Nitrated N-(2-hydroxyphenyl)acetamides and Derived Oligomers: An Alternative Pathway to 2-Amidophenol-Derived Phytotoxic Metabolites |
title_short | Bioactive Nitrosylated and Nitrated N-(2-hydroxyphenyl)acetamides and Derived Oligomers: An Alternative Pathway to 2-Amidophenol-Derived Phytotoxic Metabolites |
title_sort | bioactive nitrosylated and nitrated n-(2-hydroxyphenyl)acetamides and derived oligomers: an alternative pathway to 2-amidophenol-derived phytotoxic metabolites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330447/ https://www.ncbi.nlm.nih.gov/pubmed/35897961 http://dx.doi.org/10.3390/molecules27154786 |
work_keys_str_mv | AT girelsergey bioactivenitrosylatedandnitratedn2hydroxyphenylacetamidesandderivedoligomersanalternativepathwayto2amidophenolderivedphytotoxicmetabolites AT schutzvadim bioactivenitrosylatedandnitratedn2hydroxyphenylacetamidesandderivedoligomersanalternativepathwayto2amidophenolderivedphytotoxicmetabolites AT biglerlaurent bioactivenitrosylatedandnitratedn2hydroxyphenylacetamidesandderivedoligomersanalternativepathwayto2amidophenolderivedphytotoxicmetabolites AT dormannpeter bioactivenitrosylatedandnitratedn2hydroxyphenylacetamidesandderivedoligomersanalternativepathwayto2amidophenolderivedphytotoxicmetabolites AT schulzmargot bioactivenitrosylatedandnitratedn2hydroxyphenylacetamidesandderivedoligomersanalternativepathwayto2amidophenolderivedphytotoxicmetabolites |