Cargando…

NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion

Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on Cu(2−x)S nanocrystals (NCs) are emerging as...

Descripción completa

Detalles Bibliográficos
Autores principales: Fanizza, Elisabetta, Mastrogiacomo, Rita, Pugliese, Orietta, Guglielmelli, Alexa, De Sio, Luciano, Castaldo, Rachele, Scavo, Maria Principia, Giancaspro, Mariangela, Rizzi, Federica, Gentile, Gennaro, Vischio, Fabio, Carrieri, Livianna, De Pasquale, Ilaria, Mandriota, Giacomo, Petronella, Francesca, Ingrosso, Chiara, Lavorgna, Marino, Comparelli, Roberto, Striccoli, Marinella, Curri, Maria Lucia, Depalo, Nicoletta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330451/
https://www.ncbi.nlm.nih.gov/pubmed/35893513
http://dx.doi.org/10.3390/nano12152545
_version_ 1784758164146618368
author Fanizza, Elisabetta
Mastrogiacomo, Rita
Pugliese, Orietta
Guglielmelli, Alexa
De Sio, Luciano
Castaldo, Rachele
Scavo, Maria Principia
Giancaspro, Mariangela
Rizzi, Federica
Gentile, Gennaro
Vischio, Fabio
Carrieri, Livianna
De Pasquale, Ilaria
Mandriota, Giacomo
Petronella, Francesca
Ingrosso, Chiara
Lavorgna, Marino
Comparelli, Roberto
Striccoli, Marinella
Curri, Maria Lucia
Depalo, Nicoletta
author_facet Fanizza, Elisabetta
Mastrogiacomo, Rita
Pugliese, Orietta
Guglielmelli, Alexa
De Sio, Luciano
Castaldo, Rachele
Scavo, Maria Principia
Giancaspro, Mariangela
Rizzi, Federica
Gentile, Gennaro
Vischio, Fabio
Carrieri, Livianna
De Pasquale, Ilaria
Mandriota, Giacomo
Petronella, Francesca
Ingrosso, Chiara
Lavorgna, Marino
Comparelli, Roberto
Striccoli, Marinella
Curri, Maria Lucia
Depalo, Nicoletta
author_sort Fanizza, Elisabetta
collection PubMed
description Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on Cu(2−x)S nanocrystals (NCs) are emerging as valuable alternatives to Au nanorods, nanostars and nanoshells, largely exploited as NIR absorbing nanoheaters. Even though Cu(2−x)S plasmonic properties are not linked to geometry, the role played by their size, shape and surface chemistry is expected to be fundamental for an efficient PT process. Here, Cu(2−x)S NCs coated with a hydrophilic mesoporous silica shell (MSS) are synthesized by solution-phase strategies, tuning the core geometry, MSS thickness and texture. Besides their loading capability, the silica shell has been widely reported to provide a more robust plasmonic core protection than organic molecular/polymeric coatings, and improved heat flow from the NC to the environment due to a reduced interfacial thermal resistance and direct electron–phonon coupling through the interface. Systematic structural and morphological analysis of the core-shell nanoparticles and an in-depth thermoplasmonic characterization by using a pump beam 808 nm laser, are carried out. The results suggest that large triangular nanoplates (NPLs) coated by a few tens of nanometers thick MSS, show good photostability under laser light irradiation and provide a temperature increase above 38 °C and a 20% PT efficiency upon short irradiation time (60 s) at 6 W/cm(2) power density.
format Online
Article
Text
id pubmed-9330451
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93304512022-07-29 NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion Fanizza, Elisabetta Mastrogiacomo, Rita Pugliese, Orietta Guglielmelli, Alexa De Sio, Luciano Castaldo, Rachele Scavo, Maria Principia Giancaspro, Mariangela Rizzi, Federica Gentile, Gennaro Vischio, Fabio Carrieri, Livianna De Pasquale, Ilaria Mandriota, Giacomo Petronella, Francesca Ingrosso, Chiara Lavorgna, Marino Comparelli, Roberto Striccoli, Marinella Curri, Maria Lucia Depalo, Nicoletta Nanomaterials (Basel) Article Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on Cu(2−x)S nanocrystals (NCs) are emerging as valuable alternatives to Au nanorods, nanostars and nanoshells, largely exploited as NIR absorbing nanoheaters. Even though Cu(2−x)S plasmonic properties are not linked to geometry, the role played by their size, shape and surface chemistry is expected to be fundamental for an efficient PT process. Here, Cu(2−x)S NCs coated with a hydrophilic mesoporous silica shell (MSS) are synthesized by solution-phase strategies, tuning the core geometry, MSS thickness and texture. Besides their loading capability, the silica shell has been widely reported to provide a more robust plasmonic core protection than organic molecular/polymeric coatings, and improved heat flow from the NC to the environment due to a reduced interfacial thermal resistance and direct electron–phonon coupling through the interface. Systematic structural and morphological analysis of the core-shell nanoparticles and an in-depth thermoplasmonic characterization by using a pump beam 808 nm laser, are carried out. The results suggest that large triangular nanoplates (NPLs) coated by a few tens of nanometers thick MSS, show good photostability under laser light irradiation and provide a temperature increase above 38 °C and a 20% PT efficiency upon short irradiation time (60 s) at 6 W/cm(2) power density. MDPI 2022-07-24 /pmc/articles/PMC9330451/ /pubmed/35893513 http://dx.doi.org/10.3390/nano12152545 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fanizza, Elisabetta
Mastrogiacomo, Rita
Pugliese, Orietta
Guglielmelli, Alexa
De Sio, Luciano
Castaldo, Rachele
Scavo, Maria Principia
Giancaspro, Mariangela
Rizzi, Federica
Gentile, Gennaro
Vischio, Fabio
Carrieri, Livianna
De Pasquale, Ilaria
Mandriota, Giacomo
Petronella, Francesca
Ingrosso, Chiara
Lavorgna, Marino
Comparelli, Roberto
Striccoli, Marinella
Curri, Maria Lucia
Depalo, Nicoletta
NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion
title NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion
title_full NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion
title_fullStr NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion
title_full_unstemmed NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion
title_short NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion
title_sort nir-absorbing mesoporous silica-coated copper sulphide nanostructures for light-to-thermal energy conversion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330451/
https://www.ncbi.nlm.nih.gov/pubmed/35893513
http://dx.doi.org/10.3390/nano12152545
work_keys_str_mv AT fanizzaelisabetta nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT mastrogiacomorita nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT puglieseorietta nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT guglielmellialexa nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT desioluciano nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT castaldorachele nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT scavomariaprincipia nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT giancaspromariangela nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT rizzifederica nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT gentilegennaro nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT vischiofabio nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT carrierilivianna nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT depasqualeilaria nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT mandriotagiacomo nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT petronellafrancesca nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT ingrossochiara nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT lavorgnamarino nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT comparelliroberto nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT striccolimarinella nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT currimarialucia nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion
AT depalonicoletta nirabsorbingmesoporoussilicacoatedcoppersulphidenanostructuresforlighttothermalenergyconversion