Cargando…
Deep Learning Diagnostics of Gray Leaf Spot in Maize under Mixed Disease Field Conditions
Maize yields worldwide are limited by foliar diseases that could be fungal, oomycete, bacterial, or viral in origin. Correct disease identification is critical for farmers to apply the correct control measures, such as fungicide sprays. Deep learning has the potential for automated disease classific...
Autores principales: | Craze, Hamish A., Pillay, Nelishia, Joubert, Fourie, Berger, Dave K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330607/ https://www.ncbi.nlm.nih.gov/pubmed/35893646 http://dx.doi.org/10.3390/plants11151942 |
Ejemplares similares
-
Mapping QTL conferring resistance in maize to gray leaf spot disease caused by Cercospora zeina
por: Berger, Dave K, et al.
Publicado: (2014) -
Genome wide association study for gray leaf spot resistance in tropical maize core
por: Kuki, Maurício Carlos, et al.
Publicado: (2018) -
Combination of linkage and association mapping with genomic prediction to infer QTL regions associated with gray leaf spot and northern corn leaf blight resistance in tropical maize
por: Omondi, Dennis O., et al.
Publicado: (2023) -
Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize
por: Yu, Yang, et al.
Publicado: (2018) -
Transcriptomic Analysis Reveals Candidate Genes Responding Maize Gray Leaf Spot Caused by Cercospora zeina
por: He, Wenzhu, et al.
Publicado: (2021)