Cargando…

Surface Confined Hydrogenation of Graphene Nanoribbons

[Image: see text] On-surface synthesis with designer precursor molecules is considered an effective method for preparing graphene nanoribbons (GNRs) of well-defined widths and with tunable electronic properties. Recent reports have shown that the band gap of ribbons doped with heteroatoms (such as b...

Descripción completa

Detalles Bibliográficos
Autores principales: Sung, Yi-Ying, Vejayan, Harmina, Baddeley, Christopher J., Richardson, Neville V., Grillo, Federico, Schaub, Renald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330764/
https://www.ncbi.nlm.nih.gov/pubmed/35786912
http://dx.doi.org/10.1021/acsnano.1c11372
Descripción
Sumario:[Image: see text] On-surface synthesis with designer precursor molecules is considered an effective method for preparing graphene nanoribbons (GNRs) of well-defined widths and with tunable electronic properties. Recent reports have shown that the band gap of ribbons doped with heteroatoms (such as boron, nitrogen, and sulfur) remains unchanged in magnitude in most cases. Nevertheless, theory predicts that a tunable band gap may be engineered by hydrogenation, but experimental evidence for this is so far lacking. Herein, surface-confined hydrogenation studies of 7-armchair graphene nanoribbons (7-AGNRs) grown on Au(111) surfaces, in an ultrahigh vacuum environment, are reported. GNRs are first prepared, then hydrogenated by exposure to activated hydrogen atoms. High resolution electron energy loss spectroscopy (HREELS) and scanning tunneling microscopy (STM) images reveal a self-limited hydrogenation process. By means of a combination of bond-resolved scanning tunneling microscopy (BRSTM) imaging and tip-induced site-specific dehydrogenation, the hydrogenation mechanism is studied in detail, and density-functional theory (DFT) calculation methods are used to complement the experimental findings. In all cases, the results demonstrate the successful modification of the electronic properties of the GNR/Au(111) system by edge and basal-plane hydrogenation, and a mechanism for the hydrogenation process is proposed.