Cargando…

Effects of High Gamma Doses on the Structural Stability of Metal–Organic Frameworks

[Image: see text] Four different MOFs were exposed to γ rays by a cobalt-60 source reaching a maximum dose of 5 MGy. The results showed that the MIL-100 (Cr) and MIL-100 (Fe) did not exhibit obvious structural damage, suggesting their excellent radiation stability. MIL-101 (Cr) showed good radiation...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Chao, Liu, Huanhuan, Wolterbeek, Hubert T., Denkova, Antonia G., Serra Crespo, Pablo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330767/
https://www.ncbi.nlm.nih.gov/pubmed/35816708
http://dx.doi.org/10.1021/acs.langmuir.2c01074
Descripción
Sumario:[Image: see text] Four different MOFs were exposed to γ rays by a cobalt-60 source reaching a maximum dose of 5 MGy. The results showed that the MIL-100 (Cr) and MIL-100 (Fe) did not exhibit obvious structural damage, suggesting their excellent radiation stability. MIL-101 (Cr) showed good radiation stability up to 4 MGy, but its structure started degrading with increasing radiation dose. Furthermore, the results showed that the structure of AlFu MOFs started to decompose at a gamma dose of 1 MGy, exhibiting a much lower tolerance to γ radiation. At this radiation energy, the dominant interaction of the gamma-ray with MOFs is the Compton effect and the radiation stability of MOFs can be improved by prolific aromatic linkers, high linker connectivity, and good crystallinity. The results of this study indicate that MIL-100 and MIL-101 MOFs have a good potential to be employed in nuclear applications, where relatively high radiation doses play a role, for example, nuclear waste treatment and radionuclides production.