Cargando…

Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW

[Image: see text] We present a quantitatively accurate machine-learning (ML) model for the computational prediction of core–electron binding energies, from which X-ray photoelectron spectroscopy (XPS) spectra can be readily obtained. Our model combines density functional theory (DFT) with GW and use...

Descripción completa

Detalles Bibliográficos
Autores principales: Golze, Dorothea, Hirvensalo, Markus, Hernández-León, Patricia, Aarva, Anja, Etula, Jarkko, Susi, Toma, Rinke, Patrick, Laurila, Tomi, Caro, Miguel A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330771/
https://www.ncbi.nlm.nih.gov/pubmed/35910537
http://dx.doi.org/10.1021/acs.chemmater.1c04279
_version_ 1784758242955493376
author Golze, Dorothea
Hirvensalo, Markus
Hernández-León, Patricia
Aarva, Anja
Etula, Jarkko
Susi, Toma
Rinke, Patrick
Laurila, Tomi
Caro, Miguel A.
author_facet Golze, Dorothea
Hirvensalo, Markus
Hernández-León, Patricia
Aarva, Anja
Etula, Jarkko
Susi, Toma
Rinke, Patrick
Laurila, Tomi
Caro, Miguel A.
author_sort Golze, Dorothea
collection PubMed
description [Image: see text] We present a quantitatively accurate machine-learning (ML) model for the computational prediction of core–electron binding energies, from which X-ray photoelectron spectroscopy (XPS) spectra can be readily obtained. Our model combines density functional theory (DFT) with GW and uses kernel ridge regression for the ML predictions. We apply the new approach to disordered materials and small molecules containing carbon, hydrogen, and oxygen and obtain qualitative and quantitative agreement with experiment, resolving spectral features within 0.1 eV of reference experimental spectra. The method only requires the user to provide a structural model for the material under study to obtain an XPS prediction within seconds. Our new tool is freely available online through the XPS Prediction Server.
format Online
Article
Text
id pubmed-9330771
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-93307712022-07-29 Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW Golze, Dorothea Hirvensalo, Markus Hernández-León, Patricia Aarva, Anja Etula, Jarkko Susi, Toma Rinke, Patrick Laurila, Tomi Caro, Miguel A. Chem Mater [Image: see text] We present a quantitatively accurate machine-learning (ML) model for the computational prediction of core–electron binding energies, from which X-ray photoelectron spectroscopy (XPS) spectra can be readily obtained. Our model combines density functional theory (DFT) with GW and uses kernel ridge regression for the ML predictions. We apply the new approach to disordered materials and small molecules containing carbon, hydrogen, and oxygen and obtain qualitative and quantitative agreement with experiment, resolving spectral features within 0.1 eV of reference experimental spectra. The method only requires the user to provide a structural model for the material under study to obtain an XPS prediction within seconds. Our new tool is freely available online through the XPS Prediction Server. American Chemical Society 2022-07-13 2022-07-26 /pmc/articles/PMC9330771/ /pubmed/35910537 http://dx.doi.org/10.1021/acs.chemmater.1c04279 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Golze, Dorothea
Hirvensalo, Markus
Hernández-León, Patricia
Aarva, Anja
Etula, Jarkko
Susi, Toma
Rinke, Patrick
Laurila, Tomi
Caro, Miguel A.
Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW
title Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW
title_full Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW
title_fullStr Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW
title_full_unstemmed Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW
title_short Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW
title_sort accurate computational prediction of core-electron binding energies in carbon-based materials: a machine-learning model combining density-functional theory and gw
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330771/
https://www.ncbi.nlm.nih.gov/pubmed/35910537
http://dx.doi.org/10.1021/acs.chemmater.1c04279
work_keys_str_mv AT golzedorothea accuratecomputationalpredictionofcoreelectronbindingenergiesincarbonbasedmaterialsamachinelearningmodelcombiningdensityfunctionaltheoryandgw
AT hirvensalomarkus accuratecomputationalpredictionofcoreelectronbindingenergiesincarbonbasedmaterialsamachinelearningmodelcombiningdensityfunctionaltheoryandgw
AT hernandezleonpatricia accuratecomputationalpredictionofcoreelectronbindingenergiesincarbonbasedmaterialsamachinelearningmodelcombiningdensityfunctionaltheoryandgw
AT aarvaanja accuratecomputationalpredictionofcoreelectronbindingenergiesincarbonbasedmaterialsamachinelearningmodelcombiningdensityfunctionaltheoryandgw
AT etulajarkko accuratecomputationalpredictionofcoreelectronbindingenergiesincarbonbasedmaterialsamachinelearningmodelcombiningdensityfunctionaltheoryandgw
AT susitoma accuratecomputationalpredictionofcoreelectronbindingenergiesincarbonbasedmaterialsamachinelearningmodelcombiningdensityfunctionaltheoryandgw
AT rinkepatrick accuratecomputationalpredictionofcoreelectronbindingenergiesincarbonbasedmaterialsamachinelearningmodelcombiningdensityfunctionaltheoryandgw
AT laurilatomi accuratecomputationalpredictionofcoreelectronbindingenergiesincarbonbasedmaterialsamachinelearningmodelcombiningdensityfunctionaltheoryandgw
AT caromiguela accuratecomputationalpredictionofcoreelectronbindingenergiesincarbonbasedmaterialsamachinelearningmodelcombiningdensityfunctionaltheoryandgw