Cargando…
Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW
[Image: see text] We present a quantitatively accurate machine-learning (ML) model for the computational prediction of core–electron binding energies, from which X-ray photoelectron spectroscopy (XPS) spectra can be readily obtained. Our model combines density functional theory (DFT) with GW and use...
Autores principales: | Golze, Dorothea, Hirvensalo, Markus, Hernández-León, Patricia, Aarva, Anja, Etula, Jarkko, Susi, Toma, Rinke, Patrick, Laurila, Tomi, Caro, Miguel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330771/ https://www.ncbi.nlm.nih.gov/pubmed/35910537 http://dx.doi.org/10.1021/acs.chemmater.1c04279 |
Ejemplares similares
-
Accurate Absolute and Relative Core-Level Binding
Energies from GW
por: Golze, Dorothea, et al.
Publicado: (2020) -
Benchmark of GW Methods for Core-Level
Binding Energies
por: Li, Jiachen, et al.
Publicado: (2022) -
The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy
por: Golze, Dorothea, et al.
Publicado: (2019) -
Accelerating Core-Level GW Calculations
by Combining the Contour Deformation Approach with the Analytic Continuation
of W
por: Panadés-Barrueta, Ramón L., et al.
Publicado: (2023) -
Reactivity of Amorphous Carbon Surfaces: Rationalizing
the Role of Structural Motifs in Functionalization Using Machine Learning
por: Caro, Miguel A., et al.
Publicado: (2018)