Cargando…

Quartz-Enhanced Photothermal Spectroscopy-Based Methane Detection in an Anti-Resonant Hollow-Core Fiber

In this paper, the combination of using an anti-resonant hollow-core fiber (ARHCF), working as a gas absorption cell, and an inexpensive, commercially available watch quartz tuning fork (QTF), acting as a detector in the quartz-enhanced photothermal spectroscopy (QEPTS) sensor configuration is demon...

Descripción completa

Detalles Bibliográficos
Autores principales: Bojęś, Piotr, Pokryszka, Piotr, Jaworski, Piotr, Yu, Fei, Wu, Dakun, Krzempek, Karol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330783/
https://www.ncbi.nlm.nih.gov/pubmed/35898009
http://dx.doi.org/10.3390/s22155504
Descripción
Sumario:In this paper, the combination of using an anti-resonant hollow-core fiber (ARHCF), working as a gas absorption cell, and an inexpensive, commercially available watch quartz tuning fork (QTF), acting as a detector in the quartz-enhanced photothermal spectroscopy (QEPTS) sensor configuration is demonstrated. The proof-of-concept experiment involved the detection of methane (CH(4)) at 1651 nm (6057 cm(−1)). The advantage of the high QTF Q-factor combined with a specially designed low-noise amplifier and additional wavelength modulation spectroscopy with the second harmonic (2f-WMS) method of signal analysis, resulted in achieving a normalized noise-equivalent absorption (NNEA) at the level of 1.34 × 10(−10) and 2.04 × 10(−11) W cm(−1) Hz(−1/2) for 1 and 100 s of integration time, respectively. Results obtained in that relatively non-complex sensor setup show great potential for further development of cost-optimized and miniaturized gas detectors, taking advantage of the combination of ARHCF-based absorption cells and QTF-aided spectroscopic signal retrieval methods.