Cargando…

A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish

Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio...

Descripción completa

Detalles Bibliográficos
Autores principales: Sabharwal, Ankit, Campbell, Jarryd M., Schwab, Tanya L., WareJoncas, Zachary, Wishman, Mark D., Ata, Hirotaka, Liu, Wiebin, Ichino, Noriko, Hunter, Danielle E., Bergren, Jake D., Urban, Mark D., Urban, Rhianna M., Holmberg, Shannon R., Kar, Bibekananda, Cook, Alex, Ding, Yonghe, Xu, Xiaolei, Clark, Karl J., Ekker, Stephen C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331066/
https://www.ncbi.nlm.nih.gov/pubmed/35893052
http://dx.doi.org/10.3390/genes13081317
_version_ 1784758313116762112
author Sabharwal, Ankit
Campbell, Jarryd M.
Schwab, Tanya L.
WareJoncas, Zachary
Wishman, Mark D.
Ata, Hirotaka
Liu, Wiebin
Ichino, Noriko
Hunter, Danielle E.
Bergren, Jake D.
Urban, Mark D.
Urban, Rhianna M.
Holmberg, Shannon R.
Kar, Bibekananda
Cook, Alex
Ding, Yonghe
Xu, Xiaolei
Clark, Karl J.
Ekker, Stephen C.
author_facet Sabharwal, Ankit
Campbell, Jarryd M.
Schwab, Tanya L.
WareJoncas, Zachary
Wishman, Mark D.
Ata, Hirotaka
Liu, Wiebin
Ichino, Noriko
Hunter, Danielle E.
Bergren, Jake D.
Urban, Mark D.
Urban, Rhianna M.
Holmberg, Shannon R.
Kar, Bibekananda
Cook, Alex
Ding, Yonghe
Xu, Xiaolei
Clark, Karl J.
Ekker, Stephen C.
author_sort Sabharwal, Ankit
collection PubMed
description Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio) to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals. Currently, few effective treatments exist for those with mitochondrial ailments, representing a major unmet patient need. Mitochondrial dysfunction is also a common component of a wide variety of other human illnesses, ranging from neurodegenerative disorders such as Huntington’s disease and Parkinson’s disease to autoimmune illnesses such as multiple sclerosis and rheumatoid arthritis. The electron transport chain (ETC) component of mitochondria is critical for mitochondrial biology and defects can lead to many mitochondrial disease symptoms. Here, we present a publicly available collection of genetic mutants created in highly conserved, nuclear-encoded mitochondrial genes in Danio rerio. The zebrafish system represents a potentially powerful new opportunity for the study of mitochondrial biology and disease due to the large number of orthologous genes shared with humans and the many advanced features of this model system, from genetics to imaging. This collection includes 15 mutant lines in 13 different genes created through locus-specific gene editing to induce frameshift or splice acceptor mutations, leading to predicted protein truncation during translation. Additionally, included are 11 lines created by the random insertion of the gene-breaking transposon (GBT) protein trap cassette. All these targeted mutant alleles truncate conserved domains of genes critical to the proper function of the ETC or genes that have been implicated in human mitochondrial disease. This collection is designed to accelerate the use of zebrafish to study many different aspects of mitochondrial function to widen our understanding of their role in biology and human disease.
format Online
Article
Text
id pubmed-9331066
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93310662022-07-29 A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish Sabharwal, Ankit Campbell, Jarryd M. Schwab, Tanya L. WareJoncas, Zachary Wishman, Mark D. Ata, Hirotaka Liu, Wiebin Ichino, Noriko Hunter, Danielle E. Bergren, Jake D. Urban, Mark D. Urban, Rhianna M. Holmberg, Shannon R. Kar, Bibekananda Cook, Alex Ding, Yonghe Xu, Xiaolei Clark, Karl J. Ekker, Stephen C. Genes (Basel) Article Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio) to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals. Currently, few effective treatments exist for those with mitochondrial ailments, representing a major unmet patient need. Mitochondrial dysfunction is also a common component of a wide variety of other human illnesses, ranging from neurodegenerative disorders such as Huntington’s disease and Parkinson’s disease to autoimmune illnesses such as multiple sclerosis and rheumatoid arthritis. The electron transport chain (ETC) component of mitochondria is critical for mitochondrial biology and defects can lead to many mitochondrial disease symptoms. Here, we present a publicly available collection of genetic mutants created in highly conserved, nuclear-encoded mitochondrial genes in Danio rerio. The zebrafish system represents a potentially powerful new opportunity for the study of mitochondrial biology and disease due to the large number of orthologous genes shared with humans and the many advanced features of this model system, from genetics to imaging. This collection includes 15 mutant lines in 13 different genes created through locus-specific gene editing to induce frameshift or splice acceptor mutations, leading to predicted protein truncation during translation. Additionally, included are 11 lines created by the random insertion of the gene-breaking transposon (GBT) protein trap cassette. All these targeted mutant alleles truncate conserved domains of genes critical to the proper function of the ETC or genes that have been implicated in human mitochondrial disease. This collection is designed to accelerate the use of zebrafish to study many different aspects of mitochondrial function to widen our understanding of their role in biology and human disease. MDPI 2022-07-23 /pmc/articles/PMC9331066/ /pubmed/35893052 http://dx.doi.org/10.3390/genes13081317 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sabharwal, Ankit
Campbell, Jarryd M.
Schwab, Tanya L.
WareJoncas, Zachary
Wishman, Mark D.
Ata, Hirotaka
Liu, Wiebin
Ichino, Noriko
Hunter, Danielle E.
Bergren, Jake D.
Urban, Mark D.
Urban, Rhianna M.
Holmberg, Shannon R.
Kar, Bibekananda
Cook, Alex
Ding, Yonghe
Xu, Xiaolei
Clark, Karl J.
Ekker, Stephen C.
A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish
title A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish
title_full A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish
title_fullStr A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish
title_full_unstemmed A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish
title_short A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish
title_sort primer genetic toolkit for exploring mitochondrial biology and disease using zebrafish
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331066/
https://www.ncbi.nlm.nih.gov/pubmed/35893052
http://dx.doi.org/10.3390/genes13081317
work_keys_str_mv AT sabharwalankit aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT campbelljarrydm aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT schwabtanyal aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT warejoncaszachary aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT wishmanmarkd aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT atahirotaka aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT liuwiebin aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT ichinonoriko aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT hunterdaniellee aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT bergrenjaked aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT urbanmarkd aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT urbanrhiannam aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT holmbergshannonr aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT karbibekananda aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT cookalex aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT dingyonghe aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT xuxiaolei aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT clarkkarlj aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT ekkerstephenc aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT sabharwalankit primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT campbelljarrydm primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT schwabtanyal primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT warejoncaszachary primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT wishmanmarkd primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT atahirotaka primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT liuwiebin primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT ichinonoriko primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT hunterdaniellee primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT bergrenjaked primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT urbanmarkd primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT urbanrhiannam primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT holmbergshannonr primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT karbibekananda primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT cookalex primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT dingyonghe primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT xuxiaolei primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT clarkkarlj primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish
AT ekkerstephenc primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish