Cargando…
A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish
Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331066/ https://www.ncbi.nlm.nih.gov/pubmed/35893052 http://dx.doi.org/10.3390/genes13081317 |
_version_ | 1784758313116762112 |
---|---|
author | Sabharwal, Ankit Campbell, Jarryd M. Schwab, Tanya L. WareJoncas, Zachary Wishman, Mark D. Ata, Hirotaka Liu, Wiebin Ichino, Noriko Hunter, Danielle E. Bergren, Jake D. Urban, Mark D. Urban, Rhianna M. Holmberg, Shannon R. Kar, Bibekananda Cook, Alex Ding, Yonghe Xu, Xiaolei Clark, Karl J. Ekker, Stephen C. |
author_facet | Sabharwal, Ankit Campbell, Jarryd M. Schwab, Tanya L. WareJoncas, Zachary Wishman, Mark D. Ata, Hirotaka Liu, Wiebin Ichino, Noriko Hunter, Danielle E. Bergren, Jake D. Urban, Mark D. Urban, Rhianna M. Holmberg, Shannon R. Kar, Bibekananda Cook, Alex Ding, Yonghe Xu, Xiaolei Clark, Karl J. Ekker, Stephen C. |
author_sort | Sabharwal, Ankit |
collection | PubMed |
description | Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio) to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals. Currently, few effective treatments exist for those with mitochondrial ailments, representing a major unmet patient need. Mitochondrial dysfunction is also a common component of a wide variety of other human illnesses, ranging from neurodegenerative disorders such as Huntington’s disease and Parkinson’s disease to autoimmune illnesses such as multiple sclerosis and rheumatoid arthritis. The electron transport chain (ETC) component of mitochondria is critical for mitochondrial biology and defects can lead to many mitochondrial disease symptoms. Here, we present a publicly available collection of genetic mutants created in highly conserved, nuclear-encoded mitochondrial genes in Danio rerio. The zebrafish system represents a potentially powerful new opportunity for the study of mitochondrial biology and disease due to the large number of orthologous genes shared with humans and the many advanced features of this model system, from genetics to imaging. This collection includes 15 mutant lines in 13 different genes created through locus-specific gene editing to induce frameshift or splice acceptor mutations, leading to predicted protein truncation during translation. Additionally, included are 11 lines created by the random insertion of the gene-breaking transposon (GBT) protein trap cassette. All these targeted mutant alleles truncate conserved domains of genes critical to the proper function of the ETC or genes that have been implicated in human mitochondrial disease. This collection is designed to accelerate the use of zebrafish to study many different aspects of mitochondrial function to widen our understanding of their role in biology and human disease. |
format | Online Article Text |
id | pubmed-9331066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93310662022-07-29 A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish Sabharwal, Ankit Campbell, Jarryd M. Schwab, Tanya L. WareJoncas, Zachary Wishman, Mark D. Ata, Hirotaka Liu, Wiebin Ichino, Noriko Hunter, Danielle E. Bergren, Jake D. Urban, Mark D. Urban, Rhianna M. Holmberg, Shannon R. Kar, Bibekananda Cook, Alex Ding, Yonghe Xu, Xiaolei Clark, Karl J. Ekker, Stephen C. Genes (Basel) Article Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio) to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals. Currently, few effective treatments exist for those with mitochondrial ailments, representing a major unmet patient need. Mitochondrial dysfunction is also a common component of a wide variety of other human illnesses, ranging from neurodegenerative disorders such as Huntington’s disease and Parkinson’s disease to autoimmune illnesses such as multiple sclerosis and rheumatoid arthritis. The electron transport chain (ETC) component of mitochondria is critical for mitochondrial biology and defects can lead to many mitochondrial disease symptoms. Here, we present a publicly available collection of genetic mutants created in highly conserved, nuclear-encoded mitochondrial genes in Danio rerio. The zebrafish system represents a potentially powerful new opportunity for the study of mitochondrial biology and disease due to the large number of orthologous genes shared with humans and the many advanced features of this model system, from genetics to imaging. This collection includes 15 mutant lines in 13 different genes created through locus-specific gene editing to induce frameshift or splice acceptor mutations, leading to predicted protein truncation during translation. Additionally, included are 11 lines created by the random insertion of the gene-breaking transposon (GBT) protein trap cassette. All these targeted mutant alleles truncate conserved domains of genes critical to the proper function of the ETC or genes that have been implicated in human mitochondrial disease. This collection is designed to accelerate the use of zebrafish to study many different aspects of mitochondrial function to widen our understanding of their role in biology and human disease. MDPI 2022-07-23 /pmc/articles/PMC9331066/ /pubmed/35893052 http://dx.doi.org/10.3390/genes13081317 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sabharwal, Ankit Campbell, Jarryd M. Schwab, Tanya L. WareJoncas, Zachary Wishman, Mark D. Ata, Hirotaka Liu, Wiebin Ichino, Noriko Hunter, Danielle E. Bergren, Jake D. Urban, Mark D. Urban, Rhianna M. Holmberg, Shannon R. Kar, Bibekananda Cook, Alex Ding, Yonghe Xu, Xiaolei Clark, Karl J. Ekker, Stephen C. A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish |
title | A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish |
title_full | A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish |
title_fullStr | A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish |
title_full_unstemmed | A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish |
title_short | A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish |
title_sort | primer genetic toolkit for exploring mitochondrial biology and disease using zebrafish |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331066/ https://www.ncbi.nlm.nih.gov/pubmed/35893052 http://dx.doi.org/10.3390/genes13081317 |
work_keys_str_mv | AT sabharwalankit aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT campbelljarrydm aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT schwabtanyal aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT warejoncaszachary aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT wishmanmarkd aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT atahirotaka aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT liuwiebin aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT ichinonoriko aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT hunterdaniellee aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT bergrenjaked aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT urbanmarkd aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT urbanrhiannam aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT holmbergshannonr aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT karbibekananda aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT cookalex aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT dingyonghe aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT xuxiaolei aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT clarkkarlj aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT ekkerstephenc aprimergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT sabharwalankit primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT campbelljarrydm primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT schwabtanyal primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT warejoncaszachary primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT wishmanmarkd primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT atahirotaka primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT liuwiebin primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT ichinonoriko primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT hunterdaniellee primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT bergrenjaked primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT urbanmarkd primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT urbanrhiannam primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT holmbergshannonr primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT karbibekananda primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT cookalex primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT dingyonghe primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT xuxiaolei primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT clarkkarlj primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish AT ekkerstephenc primergenetictoolkitforexploringmitochondrialbiologyanddiseaseusingzebrafish |