Cargando…
Automatic Roadside Feature Detection Based on Lidar Road Cross Section Images
The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the International Road Assessment Program (iRAP) star rating module. It is based on 64 attributes for each road. In this paper, a framework for hig...
Autores principales: | Brkić, Ivan, Miler, Mario, Ševrović, Marko, Medak, Damir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331113/ https://www.ncbi.nlm.nih.gov/pubmed/35898014 http://dx.doi.org/10.3390/s22155510 |
Ejemplares similares
-
Utilizing High Resolution Satellite Imagery for Automated Road Infrastructure Safety Assessments
por: Brkić, Ivan, et al.
Publicado: (2023) -
ECPC-ICP: A 6D Vehicle Pose Estimation Method by Fusing the Roadside Lidar Point Cloud and Road Feature
por: Gu, Bo, et al.
Publicado: (2021) -
Real-Time Queue Length Detection with Roadside LiDAR Data
por: Wu, Jianqing, et al.
Publicado: (2020) -
Placement Method of Multiple Lidars for Roadside Infrastructure in Urban Environments
por: Kim, Tae-Hyeong, et al.
Publicado: (2023) -
Vehicle Detection under Adverse Weather from Roadside LiDAR Data
por: Wu, Jianqing, et al.
Publicado: (2020)