Cargando…
Multi-Stream Convolution-Recurrent Neural Networks Based on Attention Mechanism Fusion for Speech Emotion Recognition
The quality of feature extraction plays a significant role in the performance of speech emotion recognition. In order to extract discriminative, affect-salient features from speech signals and then improve the performance of speech emotion recognition, in this paper, a multi-stream convolution-recur...
Autores principales: | Tao, Huawei, Geng, Lei, Shan, Shuai, Mai, Jingchao, Fu, Hongliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331177/ https://www.ncbi.nlm.nih.gov/pubmed/35893005 http://dx.doi.org/10.3390/e24081025 |
Ejemplares similares
-
Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition
por: Zhang, Hua, et al.
Publicado: (2021) -
Speech emotion recognition based on improved masking EMD and convolutional recurrent neural network
por: Sun, Congshan, et al.
Publicado: (2023) -
Fusion-ConvBERT: Parallel Convolution and BERT Fusion for Speech Emotion Recognition
por: Lee, Sanghyun, et al.
Publicado: (2020) -
Speech Emotion Recognition Using Convolution Neural Networks and Multi-Head Convolutional Transformer
por: Ullah, Rizwan, et al.
Publicado: (2023) -
Speaker Recognition Using Constrained Convolutional Neural Networks in Emotional Speech
por: Simić, Nikola, et al.
Publicado: (2022)