Cargando…
Derivative Three-Dimensional Synchronous Fluorescence Analysis of Tear Fluid and Their Processing for the Diagnosis of Glaucoma
Background: Sensitive and rapid diagnosis of the early stages of glaucoma from tear fluid is a great challenge for researchers. Methods: Tear fluid was analyzed using three-dimensional synchronous fluorescence spectroscopy (3D-SFS). Our previously published results briefly describe the main methods...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331211/ https://www.ncbi.nlm.nih.gov/pubmed/35898036 http://dx.doi.org/10.3390/s22155534 |
Sumario: | Background: Sensitive and rapid diagnosis of the early stages of glaucoma from tear fluid is a great challenge for researchers. Methods: Tear fluid was analyzed using three-dimensional synchronous fluorescence spectroscopy (3D-SFS). Our previously published results briefly describe the main methods which applied the second derivative to a selected synchronous spectrum Δλ = 110 nm in distinguishing between healthy subjects (CTRL) and patients with glaucoma (POAG). Results: In this paper, a novel strategy was used to evaluate three-dimensional spectra from the tear fluid database of our patients. A series of synchronous excitation spectra were processed as a front view and presented as a single curve showcasing the overall fluorescence profile of the tear fluid. The second derivative spectrum provides two parameters that can enhance the distinction between CTRL and POAG tear fluid. Conclusions: Combining different types of 3D-SFS data can offer interesting and useful diagnostic tools and it can be used as input for machine learning and process automation. |
---|