Cargando…
A Dataset for Forestry Pest Identification
The identification of forest pests is of great significance to the prevention and control of the forest pests' scale. However, existing datasets mainly focus on common objects, which limits the application of deep learning techniques in specific fields (such as agriculture). In this paper, we c...
Autores principales: | Liu, Bing, Liu, Luyang, Zhuo, Ran, Chen, Weidong, Duan, Rui, Wang, Guishen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331284/ https://www.ncbi.nlm.nih.gov/pubmed/35909784 http://dx.doi.org/10.3389/fpls.2022.857104 |
Ejemplares similares
-
Skip DETR: end-to-end Skip connection model for small object detection in forestry pest dataset
por: Liu, Bing, et al.
Publicado: (2023) -
Insect pests of tropical forestry /
por: Speight, Martin R.
Publicado: (2001) -
Editorial: Ecological Consequences of Biodiversity and Biotechnology in Agriculture and Forestry
por: Weih, Martin, et al.
Publicado: (2016) -
Improve the Deep Learning Models in Forestry Based on Explanations and Expertise
por: Cheng, Ximeng, et al.
Publicado: (2022) -
Forestry Digital Twin With Machine Learning in Landsat 7 Data
por: Jiang, Xuetao, et al.
Publicado: (2022)