Cargando…
Nutrient Homeostasis of Aegilops Accessions Differing in B Tolerance Level under Boron Toxic Growth Conditions
SIMPLE SUMMARY: Boron toxicity stress is known to obstruct the uptake of nutrients in plants inhibiting their proper growth. Thus, the root-shoot nutrient homeostasis of plants under B toxicity stress is an important criterion that should be focused on understanding nutrients’ role in providing tole...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331359/ https://www.ncbi.nlm.nih.gov/pubmed/35892950 http://dx.doi.org/10.3390/biology11081094 |
_version_ | 1784758382648885248 |
---|---|
author | Khan, Mohd. Kamran Pandey, Anamika Hamurcu, Mehmet Germ, Mateja Yilmaz, Fatma Gokmen Ozbek, Merve Avsaroglu, Zuhal Zeynep Topal, Ali Gezgin, Sait |
author_facet | Khan, Mohd. Kamran Pandey, Anamika Hamurcu, Mehmet Germ, Mateja Yilmaz, Fatma Gokmen Ozbek, Merve Avsaroglu, Zuhal Zeynep Topal, Ali Gezgin, Sait |
author_sort | Khan, Mohd. Kamran |
collection | PubMed |
description | SIMPLE SUMMARY: Boron toxicity stress is known to obstruct the uptake of nutrients in plants inhibiting their proper growth. Thus, the root-shoot nutrient homeostasis of plants under B toxicity stress is an important criterion that should be focused on understanding nutrients’ role in providing tolerance to tolerant genotypes under excess B. Thus, in this study, the effect of toxic and highly toxic B on the nutrient uptake of Aegilops genotypes differing in B tolerance was studied for the first time. The results suggested that the readjustment of nutrient element levels in root-shoot tissues under high B stress are attributable to improved B toxicity tolerance. The information could be used to alleviate high B stress symptoms in modern wheat cultivars via breeding programs. ABSTRACT: Boron (B) is a crucial microelement for several biological processes in plants; however, it becomes hazardous when present in excess in the soil. B toxicity adversely affects the wheat yield all around the world, particularly in the arid and semiarid regions. Aegilops, the nearest wild wheat relatives, could be an efficient source to develop B toxicity tolerance in modern cultivars. However, to potentially utilize these species, it is necessary to understand the underlying mechanisms that are involved in providing them tolerance. Other than hampering cellular and physiological activities, high B inhibits the uptake of nutrients in wheat plants that lead to nutrients deficiency causing a hindered growth. Thus, it is crucial to determine the effect of B toxicity on nutrient uptake and finally, to understand the role of nutrient homeostasis in developing the adaptive mechanism in tolerant species. Unfortunately, none of the studies to date has explored the effect of high B supply on the nutrient uptake in B toxicity tolerant wild wheat species. In this study, we explored the effect of 1 mM B (toxic B), and 10 mM B (very toxic B) B on the nutrient uptake in 19 Aegilops genotypes differing in B tolerance in contrast to Bolal 2973, the familiar B tolerant genotype. The obtained outcomes suggested a significant association between the B toxicity tolerance and the level of nutrient uptake in different genotypes. The B toxicity tolerant genotypes, Ab2 (TGB 026219, A. biuncialis genotype) and Ac4 (TGB 000107, A. columnaris genotype) were clustered together in the nutrient homeostasis-based heat map. Though B toxicity mostly had an inhibitory effect on the uptake of nutrients in root-shoot tissues, the tolerant genotypes revealed an increase in nutrient uptake under B toxicity in contrast with Control. The study directs towards future research where the role of external supply of few nutrients in enhancing the B toxicity tolerance of susceptible genotypes can be studied. Moreover, the genotype-dependent variation in the nutrient profile of the studied Aegilops genotypes under high B suggested that increasing number of Aegilops germplasm should be screened for B toxicity tolerance for their successful inclusion in the pre-breeding programs focusing on this issue. |
format | Online Article Text |
id | pubmed-9331359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93313592022-07-29 Nutrient Homeostasis of Aegilops Accessions Differing in B Tolerance Level under Boron Toxic Growth Conditions Khan, Mohd. Kamran Pandey, Anamika Hamurcu, Mehmet Germ, Mateja Yilmaz, Fatma Gokmen Ozbek, Merve Avsaroglu, Zuhal Zeynep Topal, Ali Gezgin, Sait Biology (Basel) Article SIMPLE SUMMARY: Boron toxicity stress is known to obstruct the uptake of nutrients in plants inhibiting their proper growth. Thus, the root-shoot nutrient homeostasis of plants under B toxicity stress is an important criterion that should be focused on understanding nutrients’ role in providing tolerance to tolerant genotypes under excess B. Thus, in this study, the effect of toxic and highly toxic B on the nutrient uptake of Aegilops genotypes differing in B tolerance was studied for the first time. The results suggested that the readjustment of nutrient element levels in root-shoot tissues under high B stress are attributable to improved B toxicity tolerance. The information could be used to alleviate high B stress symptoms in modern wheat cultivars via breeding programs. ABSTRACT: Boron (B) is a crucial microelement for several biological processes in plants; however, it becomes hazardous when present in excess in the soil. B toxicity adversely affects the wheat yield all around the world, particularly in the arid and semiarid regions. Aegilops, the nearest wild wheat relatives, could be an efficient source to develop B toxicity tolerance in modern cultivars. However, to potentially utilize these species, it is necessary to understand the underlying mechanisms that are involved in providing them tolerance. Other than hampering cellular and physiological activities, high B inhibits the uptake of nutrients in wheat plants that lead to nutrients deficiency causing a hindered growth. Thus, it is crucial to determine the effect of B toxicity on nutrient uptake and finally, to understand the role of nutrient homeostasis in developing the adaptive mechanism in tolerant species. Unfortunately, none of the studies to date has explored the effect of high B supply on the nutrient uptake in B toxicity tolerant wild wheat species. In this study, we explored the effect of 1 mM B (toxic B), and 10 mM B (very toxic B) B on the nutrient uptake in 19 Aegilops genotypes differing in B tolerance in contrast to Bolal 2973, the familiar B tolerant genotype. The obtained outcomes suggested a significant association between the B toxicity tolerance and the level of nutrient uptake in different genotypes. The B toxicity tolerant genotypes, Ab2 (TGB 026219, A. biuncialis genotype) and Ac4 (TGB 000107, A. columnaris genotype) were clustered together in the nutrient homeostasis-based heat map. Though B toxicity mostly had an inhibitory effect on the uptake of nutrients in root-shoot tissues, the tolerant genotypes revealed an increase in nutrient uptake under B toxicity in contrast with Control. The study directs towards future research where the role of external supply of few nutrients in enhancing the B toxicity tolerance of susceptible genotypes can be studied. Moreover, the genotype-dependent variation in the nutrient profile of the studied Aegilops genotypes under high B suggested that increasing number of Aegilops germplasm should be screened for B toxicity tolerance for their successful inclusion in the pre-breeding programs focusing on this issue. MDPI 2022-07-22 /pmc/articles/PMC9331359/ /pubmed/35892950 http://dx.doi.org/10.3390/biology11081094 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Khan, Mohd. Kamran Pandey, Anamika Hamurcu, Mehmet Germ, Mateja Yilmaz, Fatma Gokmen Ozbek, Merve Avsaroglu, Zuhal Zeynep Topal, Ali Gezgin, Sait Nutrient Homeostasis of Aegilops Accessions Differing in B Tolerance Level under Boron Toxic Growth Conditions |
title | Nutrient Homeostasis of Aegilops Accessions Differing in B Tolerance Level under Boron Toxic Growth Conditions |
title_full | Nutrient Homeostasis of Aegilops Accessions Differing in B Tolerance Level under Boron Toxic Growth Conditions |
title_fullStr | Nutrient Homeostasis of Aegilops Accessions Differing in B Tolerance Level under Boron Toxic Growth Conditions |
title_full_unstemmed | Nutrient Homeostasis of Aegilops Accessions Differing in B Tolerance Level under Boron Toxic Growth Conditions |
title_short | Nutrient Homeostasis of Aegilops Accessions Differing in B Tolerance Level under Boron Toxic Growth Conditions |
title_sort | nutrient homeostasis of aegilops accessions differing in b tolerance level under boron toxic growth conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331359/ https://www.ncbi.nlm.nih.gov/pubmed/35892950 http://dx.doi.org/10.3390/biology11081094 |
work_keys_str_mv | AT khanmohdkamran nutrienthomeostasisofaegilopsaccessionsdifferinginbtolerancelevelunderborontoxicgrowthconditions AT pandeyanamika nutrienthomeostasisofaegilopsaccessionsdifferinginbtolerancelevelunderborontoxicgrowthconditions AT hamurcumehmet nutrienthomeostasisofaegilopsaccessionsdifferinginbtolerancelevelunderborontoxicgrowthconditions AT germmateja nutrienthomeostasisofaegilopsaccessionsdifferinginbtolerancelevelunderborontoxicgrowthconditions AT yilmazfatmagokmen nutrienthomeostasisofaegilopsaccessionsdifferinginbtolerancelevelunderborontoxicgrowthconditions AT ozbekmerve nutrienthomeostasisofaegilopsaccessionsdifferinginbtolerancelevelunderborontoxicgrowthconditions AT avsarogluzuhalzeynep nutrienthomeostasisofaegilopsaccessionsdifferinginbtolerancelevelunderborontoxicgrowthconditions AT topalali nutrienthomeostasisofaegilopsaccessionsdifferinginbtolerancelevelunderborontoxicgrowthconditions AT gezginsait nutrienthomeostasisofaegilopsaccessionsdifferinginbtolerancelevelunderborontoxicgrowthconditions |