Cargando…
A Novel Deep-Learning Method with Channel Attention Mechanism for Underwater Target Recognition
The core of underwater acoustic recognition is to extract the spectral features of targets. The running speed and track of the targets usually result in a Doppler shift, which poses significant challenges for recognizing targets with different Doppler frequencies. This paper proposes deep learning w...
Autores principales: | Xue, Lingzhi, Zeng, Xiangyang, Jin, Anqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331384/ https://www.ncbi.nlm.nih.gov/pubmed/35897996 http://dx.doi.org/10.3390/s22155492 |
Ejemplares similares
-
Deep Learning Methods for Underwater Target Feature Extraction and Recognition
por: Hu, Gang, et al.
Publicado: (2018) -
Underwater Acoustic Target Recognition Based on Attention Residual Network
por: Li, Juan, et al.
Publicado: (2022) -
Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2018) -
Deep convolution stack for waveform in underwater acoustic target recognition
por: Tian, Shengzhao, et al.
Publicado: (2021) -
Underwater low-light enhancement network based on bright channel prior and attention mechanism
por: Zheng, Zhangjing, et al.
Publicado: (2023)