Cargando…

A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material

Thermal energy storage via the use of latent heat and phase transition materials is a popular technology in energy storage systems. It is vital to research different thermal enhancement techniques to further improve phase transition materials’ weak thermal conductivity in these systems. This work ad...

Descripción completa

Detalles Bibliográficos
Autores principales: Jirawattanapanit, Anuwat, Abderrahmane, Aissa, Mourad, Abe, Guedri, Kamel, Younis, Obai, Bouallegue, Belgacem, Subkrajang, Khanyaluck, Rajchakit, Grienggrai, Shah, Nehad Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331441/
https://www.ncbi.nlm.nih.gov/pubmed/35893487
http://dx.doi.org/10.3390/nano12152519
_version_ 1784758404299882496
author Jirawattanapanit, Anuwat
Abderrahmane, Aissa
Mourad, Abe
Guedri, Kamel
Younis, Obai
Bouallegue, Belgacem
Subkrajang, Khanyaluck
Rajchakit, Grienggrai
Shah, Nehad Ali
author_facet Jirawattanapanit, Anuwat
Abderrahmane, Aissa
Mourad, Abe
Guedri, Kamel
Younis, Obai
Bouallegue, Belgacem
Subkrajang, Khanyaluck
Rajchakit, Grienggrai
Shah, Nehad Ali
author_sort Jirawattanapanit, Anuwat
collection PubMed
description Thermal energy storage via the use of latent heat and phase transition materials is a popular technology in energy storage systems. It is vital to research different thermal enhancement techniques to further improve phase transition materials’ weak thermal conductivity in these systems. This work addresses the creation of a basic shell and a tube thermal storage device with wavy outer walls. Then, two key methods for thermal augmentation are discussed: fins and the use of a nano-enhanced phase change material (NePCM). Using the enthalpy–porosity methodology, a numerical model is developed to highlight the viability of designing such a model utilizing reduced assumptions, both for engineering considerations and real-time predictive control methods. Different concentrations of copper nanoparticles (0, 2, and 4 vol%) and wavenumbers (4,6 and 8) are investigated in order to obtain the best heat transmission and acceleration of the melting process. The time required to reach total melting in the studied TES system is reduced by 14% and 31% in the examined TES system, respectively, when NePCM (4 vol% nanoparticles) and N = 8 are used instead of pure PCM and N = 4. The finding from this investigation could be used to design a shell-and-tube base thermal energy storage unit.
format Online
Article
Text
id pubmed-9331441
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93314412022-07-29 A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material Jirawattanapanit, Anuwat Abderrahmane, Aissa Mourad, Abe Guedri, Kamel Younis, Obai Bouallegue, Belgacem Subkrajang, Khanyaluck Rajchakit, Grienggrai Shah, Nehad Ali Nanomaterials (Basel) Article Thermal energy storage via the use of latent heat and phase transition materials is a popular technology in energy storage systems. It is vital to research different thermal enhancement techniques to further improve phase transition materials’ weak thermal conductivity in these systems. This work addresses the creation of a basic shell and a tube thermal storage device with wavy outer walls. Then, two key methods for thermal augmentation are discussed: fins and the use of a nano-enhanced phase change material (NePCM). Using the enthalpy–porosity methodology, a numerical model is developed to highlight the viability of designing such a model utilizing reduced assumptions, both for engineering considerations and real-time predictive control methods. Different concentrations of copper nanoparticles (0, 2, and 4 vol%) and wavenumbers (4,6 and 8) are investigated in order to obtain the best heat transmission and acceleration of the melting process. The time required to reach total melting in the studied TES system is reduced by 14% and 31% in the examined TES system, respectively, when NePCM (4 vol% nanoparticles) and N = 8 are used instead of pure PCM and N = 4. The finding from this investigation could be used to design a shell-and-tube base thermal energy storage unit. MDPI 2022-07-22 /pmc/articles/PMC9331441/ /pubmed/35893487 http://dx.doi.org/10.3390/nano12152519 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jirawattanapanit, Anuwat
Abderrahmane, Aissa
Mourad, Abe
Guedri, Kamel
Younis, Obai
Bouallegue, Belgacem
Subkrajang, Khanyaluck
Rajchakit, Grienggrai
Shah, Nehad Ali
A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material
title A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material
title_full A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material
title_fullStr A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material
title_full_unstemmed A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material
title_short A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material
title_sort numerical investigation of a melting rate enhancement inside a thermal energy storage system of finned heat pipe with nano-enhanced phase change material
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331441/
https://www.ncbi.nlm.nih.gov/pubmed/35893487
http://dx.doi.org/10.3390/nano12152519
work_keys_str_mv AT jirawattanapanitanuwat anumericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT abderrahmaneaissa anumericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT mouradabe anumericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT guedrikamel anumericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT younisobai anumericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT boualleguebelgacem anumericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT subkrajangkhanyaluck anumericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT rajchakitgrienggrai anumericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT shahnehadali anumericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT jirawattanapanitanuwat numericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT abderrahmaneaissa numericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT mouradabe numericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT guedrikamel numericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT younisobai numericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT boualleguebelgacem numericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT subkrajangkhanyaluck numericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT rajchakitgrienggrai numericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial
AT shahnehadali numericalinvestigationofameltingrateenhancementinsideathermalenergystoragesystemoffinnedheatpipewithnanoenhancedphasechangematerial