Cargando…
Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice
Fluorescence lifetime imaging microscopy (FLIM) evaluates the metabolic state of tissue based on reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD). Fluorescence lifetime imaging ophthalmoscopy (FLIO) can image the fundus of the eyes, but cannot detect NAD(P)H....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331481/ https://www.ncbi.nlm.nih.gov/pubmed/35892562 http://dx.doi.org/10.3390/cells11152265 |
_version_ | 1784758415676932096 |
---|---|
author | Kesavamoorthy, Niranjana Junge, Jason A. Fraser, Scott E. Ameri, Hossein |
author_facet | Kesavamoorthy, Niranjana Junge, Jason A. Fraser, Scott E. Ameri, Hossein |
author_sort | Kesavamoorthy, Niranjana |
collection | PubMed |
description | Fluorescence lifetime imaging microscopy (FLIM) evaluates the metabolic state of tissue based on reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD). Fluorescence lifetime imaging ophthalmoscopy (FLIO) can image the fundus of the eyes, but cannot detect NAD(P)H. We used multiphoton FLIM to study the metabolic state of the retina in fixed eyes of wild-type mice C57BL6/J. We sectioned the eye using a polyacrylamide gel-embedding technique and estimated the percentage of bound NAD(P)H. We found that oxidative phosphorylation was the predominant metabolic state, particularly in the inner retina, when a fixed retina was used. We also demonstrated the feasibility of FAD imaging of the retina. In addition, we demonstrated that autofluorescence and various FLIM channels, such as hemoglobin, melanin and collagen, can be used to evaluate the structure of the retina and other parts of the eye without any special staining. |
format | Online Article Text |
id | pubmed-9331481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93314812022-07-29 Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice Kesavamoorthy, Niranjana Junge, Jason A. Fraser, Scott E. Ameri, Hossein Cells Article Fluorescence lifetime imaging microscopy (FLIM) evaluates the metabolic state of tissue based on reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD). Fluorescence lifetime imaging ophthalmoscopy (FLIO) can image the fundus of the eyes, but cannot detect NAD(P)H. We used multiphoton FLIM to study the metabolic state of the retina in fixed eyes of wild-type mice C57BL6/J. We sectioned the eye using a polyacrylamide gel-embedding technique and estimated the percentage of bound NAD(P)H. We found that oxidative phosphorylation was the predominant metabolic state, particularly in the inner retina, when a fixed retina was used. We also demonstrated the feasibility of FAD imaging of the retina. In addition, we demonstrated that autofluorescence and various FLIM channels, such as hemoglobin, melanin and collagen, can be used to evaluate the structure of the retina and other parts of the eye without any special staining. MDPI 2022-07-22 /pmc/articles/PMC9331481/ /pubmed/35892562 http://dx.doi.org/10.3390/cells11152265 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kesavamoorthy, Niranjana Junge, Jason A. Fraser, Scott E. Ameri, Hossein Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice |
title | Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice |
title_full | Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice |
title_fullStr | Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice |
title_full_unstemmed | Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice |
title_short | Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice |
title_sort | insights into metabolic activity and structure of the retina through multiphoton fluorescence lifetime imaging microscopy in mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331481/ https://www.ncbi.nlm.nih.gov/pubmed/35892562 http://dx.doi.org/10.3390/cells11152265 |
work_keys_str_mv | AT kesavamoorthyniranjana insightsintometabolicactivityandstructureoftheretinathroughmultiphotonfluorescencelifetimeimagingmicroscopyinmice AT jungejasona insightsintometabolicactivityandstructureoftheretinathroughmultiphotonfluorescencelifetimeimagingmicroscopyinmice AT fraserscotte insightsintometabolicactivityandstructureoftheretinathroughmultiphotonfluorescencelifetimeimagingmicroscopyinmice AT amerihossein insightsintometabolicactivityandstructureoftheretinathroughmultiphotonfluorescencelifetimeimagingmicroscopyinmice |