Cargando…

Synergistic Action of AMX Associated with 1,8-Cineole and Its Effect on the ESBL Enzymatic Resistance Mechanism

The purpose of the present study is twofold. First, it aims to evaluate the synergistic action of the ß-lactam antibiotic; AMX is associated with 1,8-cineole on six clinical isolates of ESBL-producing Escherichia coli and Klebsiella pneumoniae strains. Second, it aims to determine the effect this as...

Descripción completa

Detalles Bibliográficos
Autores principales: Akhmouch, Ahmed Amin, Hriouech, Soukayna, Mzabi, Aouatef, Tanghort, Mariam, Chefchaou, Hanane, Remmal, Adnane, Chami, Najat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331605/
https://www.ncbi.nlm.nih.gov/pubmed/35892393
http://dx.doi.org/10.3390/antibiotics11081002
Descripción
Sumario:The purpose of the present study is twofold. First, it aims to evaluate the synergistic action of the ß-lactam antibiotic; AMX is associated with 1,8-cineole on six clinical isolates of ESBL-producing Escherichia coli and Klebsiella pneumoniae strains. Second, it aims to determine the effect this association has on the ESBL enzymatic resistance mechanism. The synergistic action of AMX/1,8-cineole was evaluated using partial inhibitory concentrations (PIC), determined by a microplate, a checkerboard and time–kill assays. The effect of AMX/1,8-cineole associations on the ESBL enzymatic resistance mechanism was evaluated using a new optimized enzymatic assay. This assay was based on the determination of the AMX antibacterial activity when combined with 1,8-cineole (at subinhibitory concentrations) in the presence or absence of the ß-lactamase enzyme toward a sensitive E. coli strain. The results of both checkerboard and time–kill assays showed a strong synergistic action between AMX and 1,8-cineole. The results of the enzymatic assay showed that the combination of AMX with 1,8-cineole notably influences the enzymatic resistance of the reaction by decreasing the affinity of the β-lactam antibiotic, AMX, to the β-lactamase enzyme. All obtained results suggested that the AMX/1,8-cineole association could be employed in therapy to overcome bacterial resistance to AMX while reducing the prevalence of resistance.