Cargando…
Multi-GNSS-Weighted Interpolated Tropospheric Delay to Improve Long-Baseline RTK Positioning
Until now, RTK (real-time kinematic) and NRTK (Network-based RTK) have been the most popular cm-level accurate positioning approaches based on Global Navigation Satellite System (GNSS) signals in real-time. The tropospheric delay is a major source of RTK errors, especially for medium and long baseli...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331772/ https://www.ncbi.nlm.nih.gov/pubmed/35898071 http://dx.doi.org/10.3390/s22155570 |
Sumario: | Until now, RTK (real-time kinematic) and NRTK (Network-based RTK) have been the most popular cm-level accurate positioning approaches based on Global Navigation Satellite System (GNSS) signals in real-time. The tropospheric delay is a major source of RTK errors, especially for medium and long baselines. This source of error is difficult to quantify due to its reliance on highly variable atmospheric humidity. In this paper, we use the NRTK approach to estimate double-differenced zenith tropospheric delays alongside ambiguities and positions based on a complete set of multi-GNSS data in a sample 6-station network in Europe. The ZTD files published by IGS were used to validate the estimated ZTDs. The results confirmed a good agreement, with an average Root Mean Squares Error (RMSE) of about 12 mm. Although multiplying the unknowns makes the mathematical model less reliable in correctly fixing integer ambiguities, adding a priori interpolated ZTD as quasi-observations can improve positioning accuracy and Integer Ambiguity Resolution (IAR) performance. In this work, weighted least-squares (WLS) were performed using the interpolation of ZTD values of near reference stations of the IGS network. When using a well-known Kriging interpolation, the weights depend on the semivariogram, and a higher network density is required to obtain the correct covariance function. Hence, we used a simple interpolation strategy, which minimized the impact of altitude variability within the network. Compared to standard RTK where ZTD is assumed to be unknown, this technique improves the positioning accuracy by about 50%. It also increased the success rate for IAR by nearly 1. |
---|