Cargando…
The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review
Background: Systemic sclerosis (SSc) is a rare connective tissue disease that can affect different organs and has extremely heterogenous presentations. This complexity makes it difficult to perform an early diagnosis and a subsequent subclassification of the disease. This hinders a personalized appr...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331823/ https://www.ncbi.nlm.nih.gov/pubmed/35893293 http://dx.doi.org/10.3390/jpm12081198 |
_version_ | 1784758495703203840 |
---|---|
author | Bonomi, Francesco Peretti, Silvia Lepri, Gemma Venerito, Vincenzo Russo, Edda Bruni, Cosimo Iannone, Florenzo Tangaro, Sabina Amedei, Amedeo Guiducci, Serena Matucci Cerinic, Marco Bellando Randone, Silvia |
author_facet | Bonomi, Francesco Peretti, Silvia Lepri, Gemma Venerito, Vincenzo Russo, Edda Bruni, Cosimo Iannone, Florenzo Tangaro, Sabina Amedei, Amedeo Guiducci, Serena Matucci Cerinic, Marco Bellando Randone, Silvia |
author_sort | Bonomi, Francesco |
collection | PubMed |
description | Background: Systemic sclerosis (SSc) is a rare connective tissue disease that can affect different organs and has extremely heterogenous presentations. This complexity makes it difficult to perform an early diagnosis and a subsequent subclassification of the disease. This hinders a personalized approach in clinical practice. In this context, machine learning (ML), a branch of artificial intelligence (AI), is able to recognize relationships in data and predict outcomes. Methods: Here, we performed a narrative review concerning the application of ML in SSc to define the state of art and evaluate its role in a precision medicine context. Results: Currently, ML has been used to stratify SSc patients and identify those at high risk of severe complications. Additionally, ML may be useful in the early detection of organ involvement. Furthermore, ML might have a role in target therapy approach and in predicting drug response. Conclusion: Available evidence about the utility of ML in SSc is sparse but promising. Future improvements in this field could result in a big step toward precision medicine. Further research is needed to define ML application in clinical practice. |
format | Online Article Text |
id | pubmed-9331823 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93318232022-07-29 The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review Bonomi, Francesco Peretti, Silvia Lepri, Gemma Venerito, Vincenzo Russo, Edda Bruni, Cosimo Iannone, Florenzo Tangaro, Sabina Amedei, Amedeo Guiducci, Serena Matucci Cerinic, Marco Bellando Randone, Silvia J Pers Med Review Background: Systemic sclerosis (SSc) is a rare connective tissue disease that can affect different organs and has extremely heterogenous presentations. This complexity makes it difficult to perform an early diagnosis and a subsequent subclassification of the disease. This hinders a personalized approach in clinical practice. In this context, machine learning (ML), a branch of artificial intelligence (AI), is able to recognize relationships in data and predict outcomes. Methods: Here, we performed a narrative review concerning the application of ML in SSc to define the state of art and evaluate its role in a precision medicine context. Results: Currently, ML has been used to stratify SSc patients and identify those at high risk of severe complications. Additionally, ML may be useful in the early detection of organ involvement. Furthermore, ML might have a role in target therapy approach and in predicting drug response. Conclusion: Available evidence about the utility of ML in SSc is sparse but promising. Future improvements in this field could result in a big step toward precision medicine. Further research is needed to define ML application in clinical practice. MDPI 2022-07-23 /pmc/articles/PMC9331823/ /pubmed/35893293 http://dx.doi.org/10.3390/jpm12081198 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Bonomi, Francesco Peretti, Silvia Lepri, Gemma Venerito, Vincenzo Russo, Edda Bruni, Cosimo Iannone, Florenzo Tangaro, Sabina Amedei, Amedeo Guiducci, Serena Matucci Cerinic, Marco Bellando Randone, Silvia The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review |
title | The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review |
title_full | The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review |
title_fullStr | The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review |
title_full_unstemmed | The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review |
title_short | The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review |
title_sort | use and utility of machine learning in achieving precision medicine in systemic sclerosis: a narrative review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331823/ https://www.ncbi.nlm.nih.gov/pubmed/35893293 http://dx.doi.org/10.3390/jpm12081198 |
work_keys_str_mv | AT bonomifrancesco theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT perettisilvia theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT leprigemma theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT veneritovincenzo theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT russoedda theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT brunicosimo theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT iannoneflorenzo theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT tangarosabina theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT amedeiamedeo theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT guiducciserena theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT matuccicerinicmarco theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT bellandorandonesilvia theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT bonomifrancesco useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT perettisilvia useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT leprigemma useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT veneritovincenzo useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT russoedda useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT brunicosimo useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT iannoneflorenzo useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT tangarosabina useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT amedeiamedeo useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT guiducciserena useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT matuccicerinicmarco useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview AT bellandorandonesilvia useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview |