Cargando…

The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review

Background: Systemic sclerosis (SSc) is a rare connective tissue disease that can affect different organs and has extremely heterogenous presentations. This complexity makes it difficult to perform an early diagnosis and a subsequent subclassification of the disease. This hinders a personalized appr...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonomi, Francesco, Peretti, Silvia, Lepri, Gemma, Venerito, Vincenzo, Russo, Edda, Bruni, Cosimo, Iannone, Florenzo, Tangaro, Sabina, Amedei, Amedeo, Guiducci, Serena, Matucci Cerinic, Marco, Bellando Randone, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331823/
https://www.ncbi.nlm.nih.gov/pubmed/35893293
http://dx.doi.org/10.3390/jpm12081198
_version_ 1784758495703203840
author Bonomi, Francesco
Peretti, Silvia
Lepri, Gemma
Venerito, Vincenzo
Russo, Edda
Bruni, Cosimo
Iannone, Florenzo
Tangaro, Sabina
Amedei, Amedeo
Guiducci, Serena
Matucci Cerinic, Marco
Bellando Randone, Silvia
author_facet Bonomi, Francesco
Peretti, Silvia
Lepri, Gemma
Venerito, Vincenzo
Russo, Edda
Bruni, Cosimo
Iannone, Florenzo
Tangaro, Sabina
Amedei, Amedeo
Guiducci, Serena
Matucci Cerinic, Marco
Bellando Randone, Silvia
author_sort Bonomi, Francesco
collection PubMed
description Background: Systemic sclerosis (SSc) is a rare connective tissue disease that can affect different organs and has extremely heterogenous presentations. This complexity makes it difficult to perform an early diagnosis and a subsequent subclassification of the disease. This hinders a personalized approach in clinical practice. In this context, machine learning (ML), a branch of artificial intelligence (AI), is able to recognize relationships in data and predict outcomes. Methods: Here, we performed a narrative review concerning the application of ML in SSc to define the state of art and evaluate its role in a precision medicine context. Results: Currently, ML has been used to stratify SSc patients and identify those at high risk of severe complications. Additionally, ML may be useful in the early detection of organ involvement. Furthermore, ML might have a role in target therapy approach and in predicting drug response. Conclusion: Available evidence about the utility of ML in SSc is sparse but promising. Future improvements in this field could result in a big step toward precision medicine. Further research is needed to define ML application in clinical practice.
format Online
Article
Text
id pubmed-9331823
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93318232022-07-29 The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review Bonomi, Francesco Peretti, Silvia Lepri, Gemma Venerito, Vincenzo Russo, Edda Bruni, Cosimo Iannone, Florenzo Tangaro, Sabina Amedei, Amedeo Guiducci, Serena Matucci Cerinic, Marco Bellando Randone, Silvia J Pers Med Review Background: Systemic sclerosis (SSc) is a rare connective tissue disease that can affect different organs and has extremely heterogenous presentations. This complexity makes it difficult to perform an early diagnosis and a subsequent subclassification of the disease. This hinders a personalized approach in clinical practice. In this context, machine learning (ML), a branch of artificial intelligence (AI), is able to recognize relationships in data and predict outcomes. Methods: Here, we performed a narrative review concerning the application of ML in SSc to define the state of art and evaluate its role in a precision medicine context. Results: Currently, ML has been used to stratify SSc patients and identify those at high risk of severe complications. Additionally, ML may be useful in the early detection of organ involvement. Furthermore, ML might have a role in target therapy approach and in predicting drug response. Conclusion: Available evidence about the utility of ML in SSc is sparse but promising. Future improvements in this field could result in a big step toward precision medicine. Further research is needed to define ML application in clinical practice. MDPI 2022-07-23 /pmc/articles/PMC9331823/ /pubmed/35893293 http://dx.doi.org/10.3390/jpm12081198 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Bonomi, Francesco
Peretti, Silvia
Lepri, Gemma
Venerito, Vincenzo
Russo, Edda
Bruni, Cosimo
Iannone, Florenzo
Tangaro, Sabina
Amedei, Amedeo
Guiducci, Serena
Matucci Cerinic, Marco
Bellando Randone, Silvia
The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review
title The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review
title_full The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review
title_fullStr The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review
title_full_unstemmed The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review
title_short The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review
title_sort use and utility of machine learning in achieving precision medicine in systemic sclerosis: a narrative review
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331823/
https://www.ncbi.nlm.nih.gov/pubmed/35893293
http://dx.doi.org/10.3390/jpm12081198
work_keys_str_mv AT bonomifrancesco theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT perettisilvia theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT leprigemma theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT veneritovincenzo theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT russoedda theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT brunicosimo theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT iannoneflorenzo theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT tangarosabina theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT amedeiamedeo theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT guiducciserena theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT matuccicerinicmarco theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT bellandorandonesilvia theuseandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT bonomifrancesco useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT perettisilvia useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT leprigemma useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT veneritovincenzo useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT russoedda useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT brunicosimo useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT iannoneflorenzo useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT tangarosabina useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT amedeiamedeo useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT guiducciserena useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT matuccicerinicmarco useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview
AT bellandorandonesilvia useandutilityofmachinelearninginachievingprecisionmedicineinsystemicsclerosisanarrativereview