Cargando…
Convolutional Neural Network for Object Detection in Garlic Root Cutting Equipment
Traditional manual garlic root cutting is inefficient and can cause food safety problems. To develop food processing equipment, a novel and accurate object detection method for garlic using deep learning—a convolutional neural network—is proposed in this study. The you-only-look-once (YOLO) algorith...
Autores principales: | Yang, Ke, Peng, Baoliang, Gu, Fengwei, Zhang, Yanhua, Wang, Shenying, Yu, Zhaoyang, Hu, Zhichao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331909/ https://www.ncbi.nlm.nih.gov/pubmed/35892782 http://dx.doi.org/10.3390/foods11152197 |
Ejemplares similares
-
Experimental Study of Garlic Root Cutting Based on Deep Learning Application in Food Primary Processing
por: Yang, Ke, et al.
Publicado: (2022) -
Kinematic analysis and process optimization of root-cutting systems in field harvesting of garlic based on computer simulation technology
por: Yu, Zhaoyang, et al.
Publicado: (2023) -
Convolutional Neural Networks Backbones for Object Detection
por: Benali Amjoud, Ayoub, et al.
Publicado: (2020) -
Robust Powerline Equipment Inspection System Based on a Convolutional Neural Network
por: Siddiqui, Zahid Ali, et al.
Publicado: (2018) -
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
por: Liu, Xingyu, et al.
Publicado: (2020)