Cargando…

Identification of Fusarium verticillioides Resistance Alleles in Three Maize Populations With Teosinte Gene Introgression

Fusarium ear rot (FER) is a common fungal disease in maize (Zea mays L.) caused by Fusarium verticillioides. Resistant germplasm resources for FER are rare in cultivated maize; however, teosintes (Z. mays ssp. parviglumis and Z. mays ssp. diploperennis), which are wild-type species of maize, have th...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Xuanjun, Xiong, Hao, Zheng, Dan, Xin, Xiaobing, Zhang, Xuemei, Wang, Qingjun, Wu, Fengkai, Xu, Jie, Lu, Yanli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331921/
https://www.ncbi.nlm.nih.gov/pubmed/35909731
http://dx.doi.org/10.3389/fpls.2022.942397
Descripción
Sumario:Fusarium ear rot (FER) is a common fungal disease in maize (Zea mays L.) caused by Fusarium verticillioides. Resistant germplasm resources for FER are rare in cultivated maize; however, teosintes (Z. mays ssp. parviglumis and Z. mays ssp. diploperennis), which are wild-type species of maize, have the potential to offer a novel source of resistance alleles to enhance pathogen resistance in modern maize. Therefore, the aim of this study was to identify favorable alleles that confer significant levels of resistance toward FER. Three populations of BC(2)F(8) recombinant inbred lines (RILs) were developed by crossing two different teosintes, Z. diploperennis and Z. parviglumis, with maize inbred lines B73 and Zheng58, and were screened for FER resistance. We found that Z. diploperennis and Z. parviglumis had higher resistance toward F. verticillioides in the leaves than B73 and Zheng58. However, the resistance toward F. verticillioides in the leaf and ear was unrelated among RILs. FER resistance was positively correlated with grain yield in the B73 × diploperennis (BD) and Zheng58 × parviglumis (ZP) populations, partly because the quantitative trait loci (QTLs) of FER resistance and yield traits were located close together. Four coincident QTLs (qFERbd5.177, qFERbd10.140, qFERzp4.066, and qFERzp5.116) and two highly reliable resistance-yield synergistic QTLs (qFERbd10.140 and qFERzp4.066) were identified in the BD and ZP populations, opening up the possibility of breeding for FER resistance without reducing yield.