Cargando…

MODECP: A Multi-Objective Based Approach for Solving Distributed Controller Placement Problem in Software Defined Network

Software-Defined Network is an emerging networking paradigm that enables intelligent and flexible network management. Specifically, the design of the control plane is crucial. Therefore, in order to avoid a single point of failure, multiple controllers are deployed constantly in a distributed manner...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Chenxi, Chen, Jia, Guo, Kuo, Liu, Shang, Chen, Jing, Gao, Deyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331998/
https://www.ncbi.nlm.nih.gov/pubmed/35897980
http://dx.doi.org/10.3390/s22155475
Descripción
Sumario:Software-Defined Network is an emerging networking paradigm that enables intelligent and flexible network management. Specifically, the design of the control plane is crucial. Therefore, in order to avoid a single point of failure, multiple controllers are deployed constantly in a distributed manner on the control plane. In this paper, we propose a controller placement approach based on multiple objectives (MODECP), including network delay, network security, load-balancing rate, and link occupancy. In the controller placement stage, an improved multi-objective differential evolution algorithm is proposed to search for controllers’ positions and assign switches to controllers reasonably. Furthermore, an improved affinity propagation algorithm is proposed to obtain the number of controllers placed in the network partition stage, comprehensively considering the delay, node security, and load. Simulations are performed based on several topologies from Internet Topology Zoo. Extensive results show that the proposed algorithm can realize trade-offs among multiple objectives and improve network performance in delay, security, controller load, and link occupancy compared to the single-objective based approach. Moreover, compared with the genetic algorithm and random placement algorithm, the proposed algorithm performs better with low latency, high security, low load rate, and low link overhead.