Cargando…
A Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learning
Tea (Camellia sinensis L.) is one of the most highly consumed beverages globally after water. Several countries import large quantities of tea from other countries to meet domestic needs. Therefore, accurate and timely prediction of tea yield is critical. The previous studies used statistical, deep...
Autores principales: | Batool, Dania, Shahbaz, Muhammad, Shahzad Asif, Hafiz, Shaukat, Kamran, Alam, Talha Mahboob, Hameed, Ibrahim A., Ramzan, Zeeshan, Waheed, Abdul, Aljuaid, Hanan, Luo, Suhuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332224/ https://www.ncbi.nlm.nih.gov/pubmed/35893629 http://dx.doi.org/10.3390/plants11151925 |
Ejemplares similares
-
A comprehensive dataset for bibliometric analysis of SARS and coronavirus impact on social sciences
por: Shaukat, Kamran, et al.
Publicado: (2020) -
Computer-Aided Diagnosis of Coal Workers’ Pneumoconiosis in Chest X-ray Radiographs Using Machine Learning: A Systematic Literature Review
por: Devnath, Liton, et al.
Publicado: (2022) -
An Efficient Deep Learning-Based Skin Cancer Classifier for an Imbalanced Dataset
por: Alam, Talha Mahboob, et al.
Publicado: (2022) -
A Proposed Framework for Early Prediction of Schistosomiasis
por: Ali, Zain, et al.
Publicado: (2022) -
Important citation identification by exploiting content and section-wise in-text citation count
por: Nazir, Shahzad, et al.
Publicado: (2020)