Cargando…
Impact of Denoising on Deep-Learning-Based Automatic Segmentation Framework for Breast Cancer Radiotherapy Planning
SIMPLE SUMMARY: We investigated the contouring data of organs at risk from 40 patients with breast cancer who underwent radiotherapy. The performance of denoising-based auto-segmentation was compared with manual segmentation and conventional deep-learning-based auto-segmentation without denoising. D...
Autores principales: | Im, Jung Ho, Lee, Ik Jae, Choi, Yeonho, Sung, Jiwon, Ha, Jin Sook, Lee, Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332287/ https://www.ncbi.nlm.nih.gov/pubmed/35892839 http://dx.doi.org/10.3390/cancers14153581 |
Ejemplares similares
-
Mutual Information-Based Non-Local Total Variation Denoiser for Low-Dose Cone-Beam Computed Tomography
por: Lee, Ho, et al.
Publicado: (2021) -
Low-dose CBCT reconstruction via joint non-local total variation denoising and cubic B-spline interpolation
por: Lee, Ho, et al.
Publicado: (2021) -
Compact bunker shielding assessment for 1.5 T MR-Linac
por: Sung, Jiwon, et al.
Publicado: (2022) -
Automatic Segmentation with Deep Learning in Radiotherapy
por: Isaksson, Lars Johannes, et al.
Publicado: (2023) -
Automatic segmentation of cardiac structures for breast cancer radiotherapy
por: Jung, Jae Won, et al.
Publicado: (2019)