Cargando…
Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms
Phase retrieval wavefront sensing methods are now of importance for imaging quality maintenance of space telescopes. However, their accuracy is susceptible to line-of-sight jitter due to the micro-vibration of the platform, which changes the intensity distribution of the image. The effect of the jit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332291/ https://www.ncbi.nlm.nih.gov/pubmed/35898086 http://dx.doi.org/10.3390/s22155584 |
_version_ | 1784758610290540544 |
---|---|
author | Guo, Liang Ju, Guohao Xu, Boqian Bai, Xiaoquan Meng, Qingyu Jiang, Fengyi Xu, Shuyan |
author_facet | Guo, Liang Ju, Guohao Xu, Boqian Bai, Xiaoquan Meng, Qingyu Jiang, Fengyi Xu, Shuyan |
author_sort | Guo, Liang |
collection | PubMed |
description | Phase retrieval wavefront sensing methods are now of importance for imaging quality maintenance of space telescopes. However, their accuracy is susceptible to line-of-sight jitter due to the micro-vibration of the platform, which changes the intensity distribution of the image. The effect of the jitter shows some stochastic properties and it is hard to present an analytic solution to this problem. This paper establishes a framework for jitter-robust image-based wavefront sensing algorithm, which utilizes two-dimensional Gaussian convolution to describe the effect of jitter on an image. On this basis, two classes of jitter-robust phase retrieval algorithms are proposed, which can be categorized into iterative-transform algorithms and parametric algorithms, respectively. Further discussions are presented for the cases where the magnitude of jitter is unknown to us. Detailed simulations and a real experiment are performed to demonstrate the effectiveness and practicality of the proposed approaches. This work improves the accuracy and practicality of the phase retrieval wavefront sensing methods in the space condition with non-ignorable micro-vibration. |
format | Online Article Text |
id | pubmed-9332291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93322912022-07-29 Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms Guo, Liang Ju, Guohao Xu, Boqian Bai, Xiaoquan Meng, Qingyu Jiang, Fengyi Xu, Shuyan Sensors (Basel) Article Phase retrieval wavefront sensing methods are now of importance for imaging quality maintenance of space telescopes. However, their accuracy is susceptible to line-of-sight jitter due to the micro-vibration of the platform, which changes the intensity distribution of the image. The effect of the jitter shows some stochastic properties and it is hard to present an analytic solution to this problem. This paper establishes a framework for jitter-robust image-based wavefront sensing algorithm, which utilizes two-dimensional Gaussian convolution to describe the effect of jitter on an image. On this basis, two classes of jitter-robust phase retrieval algorithms are proposed, which can be categorized into iterative-transform algorithms and parametric algorithms, respectively. Further discussions are presented for the cases where the magnitude of jitter is unknown to us. Detailed simulations and a real experiment are performed to demonstrate the effectiveness and practicality of the proposed approaches. This work improves the accuracy and practicality of the phase retrieval wavefront sensing methods in the space condition with non-ignorable micro-vibration. MDPI 2022-07-26 /pmc/articles/PMC9332291/ /pubmed/35898086 http://dx.doi.org/10.3390/s22155584 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Liang Ju, Guohao Xu, Boqian Bai, Xiaoquan Meng, Qingyu Jiang, Fengyi Xu, Shuyan Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms |
title | Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms |
title_full | Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms |
title_fullStr | Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms |
title_full_unstemmed | Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms |
title_short | Jitter-Robust Phase Retrieval Wavefront Sensing Algorithms |
title_sort | jitter-robust phase retrieval wavefront sensing algorithms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332291/ https://www.ncbi.nlm.nih.gov/pubmed/35898086 http://dx.doi.org/10.3390/s22155584 |
work_keys_str_mv | AT guoliang jitterrobustphaseretrievalwavefrontsensingalgorithms AT juguohao jitterrobustphaseretrievalwavefrontsensingalgorithms AT xuboqian jitterrobustphaseretrievalwavefrontsensingalgorithms AT baixiaoquan jitterrobustphaseretrievalwavefrontsensingalgorithms AT mengqingyu jitterrobustphaseretrievalwavefrontsensingalgorithms AT jiangfengyi jitterrobustphaseretrievalwavefrontsensingalgorithms AT xushuyan jitterrobustphaseretrievalwavefrontsensingalgorithms |