Cargando…
Ensemble Capsule Network with an Attention Mechanism for the Fault Diagnosis of Bearings from Imbalanced Data Samples
In order to solve the problem of imbalanced and noisy data samples for the fault diagnosis of rolling bearings, a novel ensemble capsule network (Capsnet) with a convolutional block attention module (CBAM) that is based on a weighted majority voting method is proposed in this study. Firstly, the com...
Autores principales: | Xu, Zengbing, Lee, Carman Ka Man, Lv, Yaqiong, Chan, Jeffery |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332463/ https://www.ncbi.nlm.nih.gov/pubmed/35898042 http://dx.doi.org/10.3390/s22155543 |
Ejemplares similares
-
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
por: Chao, Ko-Chieh, et al.
Publicado: (2022) -
A Novel Fault Diagnosis Method of Rolling Bearing Based on Integrated Vision Transformer Model
por: Tang, Xinyu, et al.
Publicado: (2022) -
Multi-Scale Capsule Attention Network and Joint Distributed Optimal Transport for Bearing Fault Diagnosis under Different Working Loads
por: Sun, Zihao, et al.
Publicado: (2021) -
An Ensemble Convolutional Neural Networks for Bearing Fault Diagnosis Using Multi-Sensor Data
por: Liu, Yang, et al.
Publicado: (2019) -
Network Construction for Bearing Fault Diagnosis Based on Double Attention Mechanism
por: Wu, QingE, et al.
Publicado: (2022)