Cargando…
A Space-Time Adaptive Processing Method Based on Sparse Bayesian Learning for Maneuvering Airborne Radar
Space-time adaptive processing (STAP) is an effective technology in clutter suppression and moving target detection for airborne radar. Because airborne radar moves at a constant acceleration, and there is a lack of independent and identically distributed (IID) training samples caused by the heterog...
Autores principales: | Zhang, Shuguang, Wang, Tong, Liu, Cheng, Wang, Degen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332471/ https://www.ncbi.nlm.nih.gov/pubmed/35897983 http://dx.doi.org/10.3390/s22155479 |
Ejemplares similares
-
A Fast Space-Time Adaptive Processing Algorithm Based on Sparse Bayesian Learning for Airborne Radar
por: Liu, Cheng, et al.
Publicado: (2022) -
Slow-Time Code Design for Space-Time Adaptive Processing in Airborne Radar
por: Li, Shiyi, et al.
Publicado: (2021) -
Space-Time Adaptive Processing Based on Modified Sparse Learning via Iterative Minimization for Conformal Array Radar
por: Ren, Bing, et al.
Publicado: (2022) -
A Novel Clutter Suppression Method Based on Sparse Bayesian Learning for Airborne Passive Bistatic Radar with Contaminated Reference Signal
por: Wang, Jipeng, et al.
Publicado: (2021) -
Space-time adaptive processing for radar
por: Guerci, Joseph R
Publicado: (2014)