Cargando…
Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts
Expansion of the microfluidics field dictates the necessity to constantly improve technologies used to produce such systems. One of the approaches which are used more and more is femtosecond (fs) direct laser writing (DLW). The subtractive model of DLW allows for directly producing microfluidic chan...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332475/ https://www.ncbi.nlm.nih.gov/pubmed/35893178 http://dx.doi.org/10.3390/mi13081180 |
_version_ | 1784758656316735488 |
---|---|
author | Andriukaitis, Deividas Vargalis, Rokas Šerpytis, Lukas Drevinskas, Tomas Kornyšova, Olga Stankevičius, Mantas Bimbiraitė-Survilienė, Kristina Kaškonienė, Vilma Maruškas, Audrius Sigitas Jonušauskas, Linas |
author_facet | Andriukaitis, Deividas Vargalis, Rokas Šerpytis, Lukas Drevinskas, Tomas Kornyšova, Olga Stankevičius, Mantas Bimbiraitė-Survilienė, Kristina Kaškonienė, Vilma Maruškas, Audrius Sigitas Jonušauskas, Linas |
author_sort | Andriukaitis, Deividas |
collection | PubMed |
description | Expansion of the microfluidics field dictates the necessity to constantly improve technologies used to produce such systems. One of the approaches which are used more and more is femtosecond (fs) direct laser writing (DLW). The subtractive model of DLW allows for directly producing microfluidic channels via ablation in an extremely simple and cost-effective manner. However, channel surface roughens are always a concern when direct fs ablation is used, as it normally yields an RMS value in the range of a few µm. One solution to improve it is the usage of fs bursts. Thus, in this work, we show how fs burst mode ablation can be optimized to achieve sub-µm surface roughness in glass channel fabrication. It is done without compromising on manufacturing throughput. Furthermore, we show that a simple and cost-effective channel sealing methodology of thermal bonding can be employed. Together, it allows for production functional Tesla valves, which are tested. Demonstrated capabilities are discussed. |
format | Online Article Text |
id | pubmed-9332475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93324752022-07-29 Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts Andriukaitis, Deividas Vargalis, Rokas Šerpytis, Lukas Drevinskas, Tomas Kornyšova, Olga Stankevičius, Mantas Bimbiraitė-Survilienė, Kristina Kaškonienė, Vilma Maruškas, Audrius Sigitas Jonušauskas, Linas Micromachines (Basel) Article Expansion of the microfluidics field dictates the necessity to constantly improve technologies used to produce such systems. One of the approaches which are used more and more is femtosecond (fs) direct laser writing (DLW). The subtractive model of DLW allows for directly producing microfluidic channels via ablation in an extremely simple and cost-effective manner. However, channel surface roughens are always a concern when direct fs ablation is used, as it normally yields an RMS value in the range of a few µm. One solution to improve it is the usage of fs bursts. Thus, in this work, we show how fs burst mode ablation can be optimized to achieve sub-µm surface roughness in glass channel fabrication. It is done without compromising on manufacturing throughput. Furthermore, we show that a simple and cost-effective channel sealing methodology of thermal bonding can be employed. Together, it allows for production functional Tesla valves, which are tested. Demonstrated capabilities are discussed. MDPI 2022-07-26 /pmc/articles/PMC9332475/ /pubmed/35893178 http://dx.doi.org/10.3390/mi13081180 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Andriukaitis, Deividas Vargalis, Rokas Šerpytis, Lukas Drevinskas, Tomas Kornyšova, Olga Stankevičius, Mantas Bimbiraitė-Survilienė, Kristina Kaškonienė, Vilma Maruškas, Audrius Sigitas Jonušauskas, Linas Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts |
title | Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts |
title_full | Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts |
title_fullStr | Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts |
title_full_unstemmed | Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts |
title_short | Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts |
title_sort | fabrication of microfluidic tesla valve employing femtosecond bursts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332475/ https://www.ncbi.nlm.nih.gov/pubmed/35893178 http://dx.doi.org/10.3390/mi13081180 |
work_keys_str_mv | AT andriukaitisdeividas fabricationofmicrofluidicteslavalveemployingfemtosecondbursts AT vargalisrokas fabricationofmicrofluidicteslavalveemployingfemtosecondbursts AT serpytislukas fabricationofmicrofluidicteslavalveemployingfemtosecondbursts AT drevinskastomas fabricationofmicrofluidicteslavalveemployingfemtosecondbursts AT kornysovaolga fabricationofmicrofluidicteslavalveemployingfemtosecondbursts AT stankeviciusmantas fabricationofmicrofluidicteslavalveemployingfemtosecondbursts AT bimbiraitesurvilienekristina fabricationofmicrofluidicteslavalveemployingfemtosecondbursts AT kaskonienevilma fabricationofmicrofluidicteslavalveemployingfemtosecondbursts AT maruskasaudriussigitas fabricationofmicrofluidicteslavalveemployingfemtosecondbursts AT jonusauskaslinas fabricationofmicrofluidicteslavalveemployingfemtosecondbursts |