Cargando…
Asymmetrical Artificial Potential Field as Framework of Nonlinear PID Loop to Control Position Tracking by Nonholonomic UAVs
Precise position tracking plays a key role in formation flights of UAVs (unmanned aerial vehicles) or other applications based on the idea of the leader–following scheme. It decides on the integrity of a formation or increasing the position error when a UAV follows the desired flight path. This is e...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332544/ https://www.ncbi.nlm.nih.gov/pubmed/35897978 http://dx.doi.org/10.3390/s22155474 |
Sumario: | Precise position tracking plays a key role in formation flights of UAVs (unmanned aerial vehicles) or other applications based on the idea of the leader–following scheme. It decides on the integrity of a formation or increasing the position error when a UAV follows the desired flight path. This is especially difficult in the case of nonholonomic vehicles having limited possibilities of making turns, causing a lack of stability. An asymmetrical artificial potential field (AAPF) is the way to achieve the stability of position tracking by nonholonomic UAVs, but it is only a nonlinear proportional relation to feedback given by a tracking error. Therefore, there can still be a steady-state error or error overshoots. Combining an AAPF with integral and derivative terms can improve the response of control by damping overshoots and minimizing the steady-state error. Such a combination results in a regulator whose properties allow defining it as nonlinear PID. Numerical simulation confirms that integral and derivative terms together with an AAPF create a control loop that can minimize overshoots of the tracking error and the steady-state error and satisfy conditions of asymptotical stability. |
---|