Cargando…

The effects of Ficus carica on the activity of enzymes related to metabolic syndrome

The present study aimed to investigate the effects of the various parts of Ficus carica L. (figs) on antioxidant, antidiabetic, and antiobesogenic effects in vitro. Fruit, leaves, and stembark of the F. carica plant were sequentially extracted using organic and inorganic solvents and their total pol...

Descripción completa

Detalles Bibliográficos
Autores principales: Mopuri, Ramgopal, Ganjayi, Muniswamy, Meriga, Balaji, Koorbanally, Neil Anthony, Islam, Md. Shahidul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taiwan Food and Drug Administration 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332642/
https://www.ncbi.nlm.nih.gov/pubmed/29389556
http://dx.doi.org/10.1016/j.jfda.2017.03.001
Descripción
Sumario:The present study aimed to investigate the effects of the various parts of Ficus carica L. (figs) on antioxidant, antidiabetic, and antiobesogenic effects in vitro. Fruit, leaves, and stembark of the F. carica plant were sequentially extracted using organic and inorganic solvents and their total polyphenol and flavonoid contents were estimated. The effects of the extracts on antioxidative, antidiabetic (inhibition of α-amylase and α-glucosidase enzymes), and antiobesogenic (antilipase) activities were measured using several experimental models. The fruit ethanolic extract contained a high quantity of polyphenols and flavonoids (104.67 ± 5.51 μg/mL and 81.67 ± 4.00 μg/mL) compared with all other extracts. The activity of the ethanolic extract of F. carica fruit was significantly (p < 0.05) higher than all other extracts and parts of the plant in terms of antioxidative, antidiabetic, and antiobesogenic effects. The IC(50) values of the fruit ethanolic extract in terms of antioxidative (134.44 ± 18.43 μg/mL), and inhibition of α-glucosidase (255.57 ± 36.46 μg/mL), α-amylase (315.89 ± 3.83 μg/mL), and pancreatic lipase (230.475 ± 9.65 μg/mL) activity indicate that the activity of fruit ethanolic extract is better than all other extracts of the plant. The gas chromatography–mass spectroscopy analysis of the fruit ethanolic extract showed the presence of a number of bioactive compounds such as butyl butyrate, 5-hydroxymethyl furfural, 1-butoxy-1-isobutoxy butane, malic acid, tetradecanoic acid, phytol acetate, trans phytol, n-hexadecanoic acid, 9Z,12Z-octadecadienoic acid, stearic acid, sitosterol, 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one, and 2,4,5-trimethyl-2,4-dihydro-3H-pyrazol-3-one. The results of this study suggest that the ethanolic extract of the fruit of F. carica may have potential antidiabetic and antiobesogenic agents.