Cargando…
Time–Frequency Mask-Aware Bidirectional LSTM: A Deep Learning Approach for Underwater Acoustic Signal Separation
Underwater acoustic signal separation is a key technique for underwater communications. The existing methods are mostly model-based, and cannot accurately characterize the practical underwater acoustic communication environment. They are only suitable for binary signal separation and cannot handle m...
Autores principales: | Chen, Jie, Liu, Chang, Xie, Jiawu, An, Jie, Huang, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332702/ https://www.ncbi.nlm.nih.gov/pubmed/35898099 http://dx.doi.org/10.3390/s22155598 |
Ejemplares similares
-
A novel bidirectional LSTM deep learning approach for COVID-19 forecasting
por: Aung, Nway Nway, et al.
Publicado: (2023) -
Scene Text Recognition Based on Bidirectional LSTM and Deep Neural Network
por: Kantipudi, MVV Prasad, et al.
Publicado: (2021) -
LSTMCNNsucc: A Bidirectional LSTM and CNN-Based Deep Learning Method for Predicting Lysine Succinylation Sites
por: Huang, Guohua, et al.
Publicado: (2021) -
Optimal path selection and secured data transmission in underwater acoustic sensor networks: LSTM-based energy prediction
por: Kaveripakam, Sathish, et al.
Publicado: (2023) -
Underwater Acoustic Target Recognition Based on Supervised Feature-Separation Algorithm
por: Ke, Xiaoquan, et al.
Publicado: (2018)