Cargando…
Lightweight Single Image Super-Resolution with Selective Channel Processing Network
With the development of deep learning, considerable progress has been made in image restoration. Notably, many state-of-the-art single image super-resolution (SR) methods have been proposed. However, most of them contain many parameters, which leads to a significant amount of calculation consumption...
Autores principales: | Zhu, Hongyu, Tang, Hao, Hu, Yaocong, Tao, Huanjie, Xie, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332725/ https://www.ncbi.nlm.nih.gov/pubmed/35898091 http://dx.doi.org/10.3390/s22155586 |
Ejemplares similares
-
Spatial and Channel Aggregation Network for Lightweight Image Super-Resolution
por: Wu, Xianyu, et al.
Publicado: (2023) -
Enhanced Single Image Super Resolution Method Using Lightweight Multi-Scale Channel Dense Network
por: Lee, Yooho, et al.
Publicado: (2021) -
Context-aware lightweight remote-sensing image super-resolution network
por: Peng, Guangwen, et al.
Publicado: (2023) -
Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution
por: Shen, Ying, et al.
Publicado: (2023) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021)