Cargando…
Development of a Lightweight Crop Disease Image Identification Model Based on Attentional Feature Fusion
Crop diseases are one of the important factors affecting crop yield and quality and are also an important research target in the field of agriculture. In order to quickly and accurately identify crop diseases, help farmers to control crop diseases in time, and reduce crop losses. Inspired by the app...
Autores principales: | Cheng, Zekai, Liu, Meifang, Qian, Rong, Huang, Rongqing, Dong, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332736/ https://www.ncbi.nlm.nih.gov/pubmed/35898053 http://dx.doi.org/10.3390/s22155550 |
Ejemplares similares
-
Deep-agriNet: a lightweight attention-based encoder-decoder framework for crop identification using multispectral images
por: Hu, Yimin, et al.
Publicado: (2023) -
A Lightweight YOLOv4-Based Forestry Pest Detection Method Using Coordinate Attention and Feature Fusion
por: Zha, Mingfeng, et al.
Publicado: (2021) -
A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation
por: Luo, Yang, et al.
Publicado: (2023) -
Infrared and Visible Image Fusion via Attention-Based Adaptive Feature Fusion
por: Wang, Lei, et al.
Publicado: (2023) -
Fourier Channel Attention Powered Lightweight Network for Image Segmentation
Publicado: (2023)