Cargando…

Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites

The nanocomposites of poly(vinylidene fluoride) (PVDF) with pristine graphene nanoflakes (GNF) and a multi-wall carbon nanotube (MWCNT) were prepared by the solution casting method. Additionally, the GNF and MWCNT were functionalized by acid treatment, and nanocomposites of the acid-treated MWCNT/GN...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Harthi, Mamdouh A., Hussain, Manwar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332778/
https://www.ncbi.nlm.nih.gov/pubmed/35893940
http://dx.doi.org/10.3390/polym14152976
_version_ 1784758732193792000
author Al-Harthi, Mamdouh A.
Hussain, Manwar
author_facet Al-Harthi, Mamdouh A.
Hussain, Manwar
author_sort Al-Harthi, Mamdouh A.
collection PubMed
description The nanocomposites of poly(vinylidene fluoride) (PVDF) with pristine graphene nanoflakes (GNF) and a multi-wall carbon nanotube (MWCNT) were prepared by the solution casting method. Additionally, the GNF and MWCNT were functionalized by acid treatment, and nanocomposites of the acid-treated MWCNT/GNF and PVDF were prepared in the same method. The effect of the acid treatment of MWCNT and GNF on the mechanical, thermal and thermo-oxidative stability and the thermal conductivity of the MWCNT/GNF-PVDF nanocomposites was evaluated, and the results were compared with the untreated MWCNT/GNF-PVDF nanocomposites. In both cases, the amount of GNF and MWCNT was varied to observe and compare their thermal and mechanical properties. The functionalization of the GNF or MWCNT resulted in the change in the crystallization and melting behavior of the nanocomposites, as confirmed by the differential scanning calorimetry analysis. The addition of the functionalized GNF/MWCNT led to the improved thermal stability of the PVDF nanocomposites compared to that of the non-functionalized GNF/MWCNT-PVDF nanocomposites. The thermal and electrical conductivity of the functionalized and non-functionalized GNF/MWCNT-PVDF composites were also measured and compared. The functional groups, crystal structure, microstructure and morphology of the nanocomposites were characterized by Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively.
format Online
Article
Text
id pubmed-9332778
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93327782022-07-29 Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites Al-Harthi, Mamdouh A. Hussain, Manwar Polymers (Basel) Article The nanocomposites of poly(vinylidene fluoride) (PVDF) with pristine graphene nanoflakes (GNF) and a multi-wall carbon nanotube (MWCNT) were prepared by the solution casting method. Additionally, the GNF and MWCNT were functionalized by acid treatment, and nanocomposites of the acid-treated MWCNT/GNF and PVDF were prepared in the same method. The effect of the acid treatment of MWCNT and GNF on the mechanical, thermal and thermo-oxidative stability and the thermal conductivity of the MWCNT/GNF-PVDF nanocomposites was evaluated, and the results were compared with the untreated MWCNT/GNF-PVDF nanocomposites. In both cases, the amount of GNF and MWCNT was varied to observe and compare their thermal and mechanical properties. The functionalization of the GNF or MWCNT resulted in the change in the crystallization and melting behavior of the nanocomposites, as confirmed by the differential scanning calorimetry analysis. The addition of the functionalized GNF/MWCNT led to the improved thermal stability of the PVDF nanocomposites compared to that of the non-functionalized GNF/MWCNT-PVDF nanocomposites. The thermal and electrical conductivity of the functionalized and non-functionalized GNF/MWCNT-PVDF composites were also measured and compared. The functional groups, crystal structure, microstructure and morphology of the nanocomposites were characterized by Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. MDPI 2022-07-22 /pmc/articles/PMC9332778/ /pubmed/35893940 http://dx.doi.org/10.3390/polym14152976 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Al-Harthi, Mamdouh A.
Hussain, Manwar
Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites
title Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites
title_full Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites
title_fullStr Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites
title_full_unstemmed Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites
title_short Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites
title_sort effect of the surface functionalization of graphene and mwcnt on the thermodynamic, mechanical and electrical properties of the graphene/mwcnt-pvdf nanocomposites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332778/
https://www.ncbi.nlm.nih.gov/pubmed/35893940
http://dx.doi.org/10.3390/polym14152976
work_keys_str_mv AT alharthimamdouha effectofthesurfacefunctionalizationofgrapheneandmwcntonthethermodynamicmechanicalandelectricalpropertiesofthegraphenemwcntpvdfnanocomposites
AT hussainmanwar effectofthesurfacefunctionalizationofgrapheneandmwcntonthethermodynamicmechanicalandelectricalpropertiesofthegraphenemwcntpvdfnanocomposites