Cargando…

Two types of C-terminal regions of RNA-binding proteins play distinct roles in stress tolerance of Synechocystis sp. PCC 6803

In the phylogenetic tree of RRM-type Rbps (RNA-binding proteins) in cyanobacteria, Rbp1 of Synechocystis 6803, with a single RRM (RNA recognition motif) region and a C-terminal glycine-rich region, and Rbp2, without the C-terminal region, both belong to the cluster I, whereas Rbp3 with a different t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yueming, Wu, Dongqing, Wang, Yali, Xu, Xudong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333190/
https://www.ncbi.nlm.nih.gov/pubmed/35212739
http://dx.doi.org/10.1093/femsle/fnac021
Descripción
Sumario:In the phylogenetic tree of RRM-type Rbps (RNA-binding proteins) in cyanobacteria, Rbp1 of Synechocystis 6803, with a single RRM (RNA recognition motif) region and a C-terminal glycine-rich region, and Rbp2, without the C-terminal region, both belong to the cluster I, whereas Rbp3 with a different type of C-terminal region is in the cluster II. Rbp1 is required for the cold adaptability of the cyanobacterium, and Rbp3 is for salt tolerance. Here, we report that the C-terminal region of Rbp1 is not required for the cold adaptability function but the C-terminal region of Rbp3 can direct the RRM of Rbp1 to the salt tolerance function. Bioinformatic and experimental analyses indicate that Rbps in cyanobacteria should be classified as two types. It is the first report for the distinct roles of C-terminal regions of Rbps in stress tolerance of cyanobacteria.