Cargando…
A machine learning model on Real World Data for predicting progression to Acute Respiratory Distress Syndrome (ARDS) among COVID-19 patients
INTRODUCTION: Identifying COVID-19 patients that are most likely to progress to a severe infection is crucial for optimizing care management and increasing the likelihood of survival. This study presents a machine learning model that predicts severe cases of COVID-19, defined as the presence of Acut...
Autores principales: | Lazzarini, Nicola, Filippoupolitis, Avgoustinos, Manzione, Pedro, Eleftherohorinou, Hariklia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333235/ https://www.ncbi.nlm.nih.gov/pubmed/35901089 http://dx.doi.org/10.1371/journal.pone.0271227 |
Ejemplares similares
-
Location-Enhanced Activity Recognition in Indoor Environments Using Off the Shelf Smart Watch Technology and BLE Beacons
por: Filippoupolitis, Avgoustinos, et al.
Publicado: (2017) -
Measles-induced respiratory distress, air-leak and ARDS
por: Piastra, M., et al.
Publicado: (2009) -
Kratom-Induced Acute Respiratory Distress Syndrome (ARDS)
por: Chinnappan, Justine, et al.
Publicado: (2023) -
Human herpesviruses respiratory infections in patients with acute respiratory distress (ARDS)
por: Bonizzoli, Manuela, et al.
Publicado: (2016) -
eARDS: A multi-center validation of an interpretable machine learning algorithm of early onset Acute Respiratory Distress Syndrome (ARDS) among critically ill adults with COVID-19
por: Singhal, Lakshya, et al.
Publicado: (2021)