Cargando…
Volatility forecasts of stock index futures in China and the US–A hybrid LSTM approach
This paper is concerned with the unsolved issue of how to accurately predict the financial market volatility. We propose a novel volatility prediction method for stock index futures prediction based on LSTM, PCA, stock indices and relevant futures. Inspired by the recent advancement of deep learning...
Autores principales: | Chen, Xue, Hu, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333249/ https://www.ncbi.nlm.nih.gov/pubmed/35901029 http://dx.doi.org/10.1371/journal.pone.0271595 |
Ejemplares similares
-
LSTM-based sentiment analysis for stock price forecast
por: Ko, Ching-Ru, et al.
Publicado: (2021) -
Forecasting shipping index using CEEMD-PSO-BiLSTM model
por: Li, Chengang, et al.
Publicado: (2023) -
Minimum Message Length in Hybrid ARMA and LSTM Model Forecasting
por: Fang, Zheng, et al.
Publicado: (2021) -
Data science approach to stock prices forecasting in Indonesia during Covid-19 using Long Short-Term Memory (LSTM)
por: Budiharto, Widodo
Publicado: (2021) -
LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios
por: García-Medina, Andrés, et al.
Publicado: (2023)