Cargando…
High-throughput image-based plant stand count estimation using convolutional neural networks
The landscape of farming and plant breeding is rapidly transforming due to the complex requirements of our world. The explosion of collectible data has started a revolution in agriculture to the point where innovation must occur. To a commercial organization, the accurate and efficient collection of...
Autores principales: | Khaki, Saeed, Pham, Hieu, Khalilzadeh, Zahra, Masoud, Arezoo, Safaei, Nima, Han, Ye, Kent, Wade, Wang, Lizhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333310/ https://www.ncbi.nlm.nih.gov/pubmed/35901120 http://dx.doi.org/10.1371/journal.pone.0268762 |
Ejemplares similares
-
Convolutional Neural Networks for Image-Based Corn Kernel Detection and Counting
por: Khaki, Saeed, et al.
Publicado: (2020) -
Predicting yield performance of parents in plant breeding: A neural collaborative filtering approach
por: Khaki, Saeed, et al.
Publicado: (2020) -
Winter wheat yield prediction using convolutional neural networks from environmental and phenological data
por: Srivastava, Amit Kumar, et al.
Publicado: (2022) -
Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks
por: Zhang, Jian, et al.
Publicado: (2020) -
Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning
por: Khaki, Saeed, et al.
Publicado: (2021)