Cargando…
Autologous Hematopoietic Stem-Cell Transplantation in Multiple Sclerosis: A Systematic Review and Meta-Analysis
INTRODUCTION: In 1995, the use of autologous hematopoietic stem-cell transplantation (AHSCT), which was previously used to treat hematological tumors, was introduced for severe autoimmune diseases such as multiple sclerosis (MS). AHSCT has proven its safety over the past few years due to technical a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Healthcare
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333355/ https://www.ncbi.nlm.nih.gov/pubmed/35902484 http://dx.doi.org/10.1007/s40120-022-00389-x |
Sumario: | INTRODUCTION: In 1995, the use of autologous hematopoietic stem-cell transplantation (AHSCT), which was previously used to treat hematological tumors, was introduced for severe autoimmune diseases such as multiple sclerosis (MS). AHSCT has proven its safety over the past few years due to technical advances and careful patient selection in transplant centers. While most studies have reported that AHSCT led to decreased Expanded Disability Status Scale (EDSS) scores, some patients reported increased EDSS scores following the procedure. Given the contradictory results, we aimed to conduct a comprehensive systematic review and meta-analysis to investigate the efficacy and safety of AHSCT. METHODS: PubMed, Web of Science, and Scopus were searched in March 2022 using a predefined search strategy. We included cohort studies, clinical trials, case–control studies, and case series that investigated the efficacy or safety of AHSCT in patients with MS. PICO in the present study was defined as follows: problem or study population (P): patients with MS; intervention (I): AHSCT; comparison (C): none; outcome (O): efficacy and safety. RESULTS: After a two-step review process, 50 studies with a total of 4831 patients with MS were included in our study. Our analysis showed a significant decrease in EDSS score after treatment (standardized mean difference [SMD]: −0.48, 95% CI −0.75, −0.22). Moreover, the annualized relapse rate was also significantly reduced after AHSCT compared to the pretreatment period (SMD: −1.58, 95% CI −2.34, −0.78). The pooled estimate of progression-free survival after treatment was 73% (95% CI 69%, 77). Furthermore, 81% of patients with MS who received AHSCT remained relapse-free (95% CI 76%, 86%). Investigating event-free survival, which reflects the absence of any disease-related event, showed a pooled estimate of 63% (95% CI 54%, 73%). Also, the MRI activity-free survival was 89% (95% CI 84%) among included studies with low heterogeneity. New MRI lesions seem to appear in nearly 8% of patients who underwent AHSCT (95% CI 4%, 12%). Our meta-analysis showed that 68% of patients with MS experience no evidence of disease activity (NEDA) after AHSCT (95% CI 59%, 77). The overall survival after transplantation was 94% (95% CI 91%, 96%). In addition, 4% of patients died from transplant-related causes (95% CI 2%, 6%). CONCLUSION: Current data encourages a broader application of AHSCT for treating patients with MS while still considering proper patient selection and transplant methods. In addition, with increasing knowledge and expertise in the field of stem-cell therapy, AHSCT has become a safer treatment approach for MS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40120-022-00389-x. |
---|