Cargando…
An evolutionary machine learning algorithm for cardiovascular disease risk prediction
INTRODUCTION: This study developed a novel risk assessment model to predict the occurrence of cardiovascular disease (CVD) events. It uses a Genetic Algorithm (GA) to develop an easy-to-use model with high accuracy, calibrated based on the Isfahan Cohort Study (ICS) database. METHODS: The ICS was a...
Autores principales: | Ordikhani, Mohammad, Saniee Abadeh, Mohammad, Prugger, Christof, Hassannejad, Razieh, Mohammadifard, Noushin, Sarrafzadegan, Nizal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333440/ https://www.ncbi.nlm.nih.gov/pubmed/35901181 http://dx.doi.org/10.1371/journal.pone.0271723 |
Ejemplares similares
-
Longitudinal association of dietary habits and the risk of cardiovascular disease among Iranian population between 2001 and 2013: the Isfahan Cohort Study
por: Mohseni, Maryam, et al.
Publicado: (2023) -
Longitudinal Association of Nut Consumption and the Risk of Cardiovascular Events: A Prospective Cohort Study in the Eastern Mediterranean Region
por: Mohammadifard, Noushin, et al.
Publicado: (2021) -
Pathways leading to prevention of fatal and non-fatal cardiovascular disease: An interaction model on 15 years population-based cohort study
por: Shakibaei, Najmeh, et al.
Publicado: (2020) -
The long-term association of different dietary protein sources with metabolic syndrome
por: Hajihashemi, Parisa, et al.
Publicado: (2021) -
MapReduce-Based Parallel Genetic Algorithm for CpG-Site Selection in Age Prediction
por: Momeni, Zahra, et al.
Publicado: (2019)