Cargando…
Predicting article citations using data from 100 top-cited publications in the field of Psoriasis Vulgaris and biological agents (PVBA) since 1991: A bibliometric analysis
BACKGROUND: Psoriasis Vulgaris is a chronic inflammatory disease characterized by keratinocyte hyperproliferation. Bibliometric analysis helps determine the most influential article on the topic of “Psoriasis Vulgaris and biological agents (PVBAs)”, and what factors affect article citation remain un...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333523/ https://www.ncbi.nlm.nih.gov/pubmed/35905256 http://dx.doi.org/10.1097/MD.0000000000029396 |
_version_ | 1784758896477339648 |
---|---|
author | Chen, Chieh-Hsun Chien, Tsair-Wei Yu-Chieh Ho, Sam Lai, Feng-Jie |
author_facet | Chen, Chieh-Hsun Chien, Tsair-Wei Yu-Chieh Ho, Sam Lai, Feng-Jie |
author_sort | Chen, Chieh-Hsun |
collection | PubMed |
description | BACKGROUND: Psoriasis Vulgaris is a chronic inflammatory disease characterized by keratinocyte hyperproliferation. Bibliometric analysis helps determine the most influential article on the topic of “Psoriasis Vulgaris and biological agents (PVBAs)”, and what factors affect article citation remain unclear. This study aims (1) to identify the top 100 most cited articles in PVBA (PVBA100 for short) from 1991 to 2020, (2) to visualize dominant entities on one diagram using data in PVBA100, and (3) to investigate whether medical subject headings (MeSH terms) can be used to predict article citations. METHODS: The top 100 most cited articles relevant to PVBA (1991–2020) were downloaded by searching the PubMed database. Citation analysis was applied to compare the dominant roles in article types and topic categories using pyramid plots. Social network analysis (SNA) and Sankey diagrams were applied to highlight prominent entities. We examined the MeSH prediction effect on article citations using its correlation coefficients. RESULTS: The most frequent article types and topic categories were research support by institutes (46%) and drug therapy (88%), respectively. The most productive countries were the United States (38%), followed by Germany (13%) and Japan (12%). Most articles were published in Br J Dermatol (13%) and J Invest Dermatol (11%). MeSH terms were evident in the prediction power of the number of article citations (correlation coefficient=0.45, t=4.99). CONCLUSIONS: The breakthrough was made by developing one dashboard to display PVBA100. MeSH terms can be used for predicting article citations in PVBA100. These visualizations of PVBA100 could be applied to future academic pursuits and applications in other academic disciplines. |
format | Online Article Text |
id | pubmed-9333523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-93335232022-08-03 Predicting article citations using data from 100 top-cited publications in the field of Psoriasis Vulgaris and biological agents (PVBA) since 1991: A bibliometric analysis Chen, Chieh-Hsun Chien, Tsair-Wei Yu-Chieh Ho, Sam Lai, Feng-Jie Medicine (Baltimore) Research Article BACKGROUND: Psoriasis Vulgaris is a chronic inflammatory disease characterized by keratinocyte hyperproliferation. Bibliometric analysis helps determine the most influential article on the topic of “Psoriasis Vulgaris and biological agents (PVBAs)”, and what factors affect article citation remain unclear. This study aims (1) to identify the top 100 most cited articles in PVBA (PVBA100 for short) from 1991 to 2020, (2) to visualize dominant entities on one diagram using data in PVBA100, and (3) to investigate whether medical subject headings (MeSH terms) can be used to predict article citations. METHODS: The top 100 most cited articles relevant to PVBA (1991–2020) were downloaded by searching the PubMed database. Citation analysis was applied to compare the dominant roles in article types and topic categories using pyramid plots. Social network analysis (SNA) and Sankey diagrams were applied to highlight prominent entities. We examined the MeSH prediction effect on article citations using its correlation coefficients. RESULTS: The most frequent article types and topic categories were research support by institutes (46%) and drug therapy (88%), respectively. The most productive countries were the United States (38%), followed by Germany (13%) and Japan (12%). Most articles were published in Br J Dermatol (13%) and J Invest Dermatol (11%). MeSH terms were evident in the prediction power of the number of article citations (correlation coefficient=0.45, t=4.99). CONCLUSIONS: The breakthrough was made by developing one dashboard to display PVBA100. MeSH terms can be used for predicting article citations in PVBA100. These visualizations of PVBA100 could be applied to future academic pursuits and applications in other academic disciplines. Lippincott Williams & Wilkins 2022-07-29 /pmc/articles/PMC9333523/ /pubmed/35905256 http://dx.doi.org/10.1097/MD.0000000000029396 Text en Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC) (https://creativecommons.org/licenses/by-nc/4.0/) , where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal. |
spellingShingle | Research Article Chen, Chieh-Hsun Chien, Tsair-Wei Yu-Chieh Ho, Sam Lai, Feng-Jie Predicting article citations using data from 100 top-cited publications in the field of Psoriasis Vulgaris and biological agents (PVBA) since 1991: A bibliometric analysis |
title | Predicting article citations using data from 100 top-cited publications in the field of Psoriasis Vulgaris and biological agents (PVBA) since 1991: A bibliometric analysis |
title_full | Predicting article citations using data from 100 top-cited publications in the field of Psoriasis Vulgaris and biological agents (PVBA) since 1991: A bibliometric analysis |
title_fullStr | Predicting article citations using data from 100 top-cited publications in the field of Psoriasis Vulgaris and biological agents (PVBA) since 1991: A bibliometric analysis |
title_full_unstemmed | Predicting article citations using data from 100 top-cited publications in the field of Psoriasis Vulgaris and biological agents (PVBA) since 1991: A bibliometric analysis |
title_short | Predicting article citations using data from 100 top-cited publications in the field of Psoriasis Vulgaris and biological agents (PVBA) since 1991: A bibliometric analysis |
title_sort | predicting article citations using data from 100 top-cited publications in the field of psoriasis vulgaris and biological agents (pvba) since 1991: a bibliometric analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333523/ https://www.ncbi.nlm.nih.gov/pubmed/35905256 http://dx.doi.org/10.1097/MD.0000000000029396 |
work_keys_str_mv | AT chenchiehhsun predictingarticlecitationsusingdatafrom100topcitedpublicationsinthefieldofpsoriasisvulgarisandbiologicalagentspvbasince1991abibliometricanalysis AT chientsairwei predictingarticlecitationsusingdatafrom100topcitedpublicationsinthefieldofpsoriasisvulgarisandbiologicalagentspvbasince1991abibliometricanalysis AT yuchiehhosam predictingarticlecitationsusingdatafrom100topcitedpublicationsinthefieldofpsoriasisvulgarisandbiologicalagentspvbasince1991abibliometricanalysis AT laifengjie predictingarticlecitationsusingdatafrom100topcitedpublicationsinthefieldofpsoriasisvulgarisandbiologicalagentspvbasince1991abibliometricanalysis |