Cargando…
Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task
An algorithm framework based on CycleGAN and an upgraded dual-path network (DPN) is suggested to address the difficulties of uneven staining in pathological pictures and difficulty of discriminating benign from malignant cells. CycleGAN is used for color normalization in pathological pictures to tac...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334078/ https://www.ncbi.nlm.nih.gov/pubmed/35909482 http://dx.doi.org/10.1155/2022/6336700 |
_version_ | 1784759021170851840 |
---|---|
author | Chopra, Pooja Junath, N. Singh, Sitesh Kumar Khan, Shakir Sugumar, R. Bhowmick, Mithun |
author_facet | Chopra, Pooja Junath, N. Singh, Sitesh Kumar Khan, Shakir Sugumar, R. Bhowmick, Mithun |
author_sort | Chopra, Pooja |
collection | PubMed |
description | An algorithm framework based on CycleGAN and an upgraded dual-path network (DPN) is suggested to address the difficulties of uneven staining in pathological pictures and difficulty of discriminating benign from malignant cells. CycleGAN is used for color normalization in pathological pictures to tackle the problem of uneven staining. However, the resultant detection model is ineffective. By overlapping the images, the DPN uses the addition of small convolution, deconvolution, and attention mechanisms to enhance the model's ability to classify the texture features of pathological images on the BreaKHis dataset. The parameters that are taken into consideration for measuring the accuracy of the proposed model are false-positive rate, false-negative rate, recall, precision, and F1 score. Several experiments are carried out over the selected parameters, such as making comparisons between benign and malignant classification accuracy under different normalization methods, comparison of accuracy of image level and patient level using different CNN models, correlating the correctness of DPN68-A network with different deep learning models and other classification algorithms at all magnifications. The results thus obtained have proved that the proposed model DPN68-A network can effectively classify the benign and malignant breast cancer pathological images at various magnifications. The proposed model also is able to better assist the pathologists in diagnosing the patients by synthesizing the images of different magnifications in the clinical stage. |
format | Online Article Text |
id | pubmed-9334078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-93340782022-07-29 Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task Chopra, Pooja Junath, N. Singh, Sitesh Kumar Khan, Shakir Sugumar, R. Bhowmick, Mithun Biomed Res Int Research Article An algorithm framework based on CycleGAN and an upgraded dual-path network (DPN) is suggested to address the difficulties of uneven staining in pathological pictures and difficulty of discriminating benign from malignant cells. CycleGAN is used for color normalization in pathological pictures to tackle the problem of uneven staining. However, the resultant detection model is ineffective. By overlapping the images, the DPN uses the addition of small convolution, deconvolution, and attention mechanisms to enhance the model's ability to classify the texture features of pathological images on the BreaKHis dataset. The parameters that are taken into consideration for measuring the accuracy of the proposed model are false-positive rate, false-negative rate, recall, precision, and F1 score. Several experiments are carried out over the selected parameters, such as making comparisons between benign and malignant classification accuracy under different normalization methods, comparison of accuracy of image level and patient level using different CNN models, correlating the correctness of DPN68-A network with different deep learning models and other classification algorithms at all magnifications. The results thus obtained have proved that the proposed model DPN68-A network can effectively classify the benign and malignant breast cancer pathological images at various magnifications. The proposed model also is able to better assist the pathologists in diagnosing the patients by synthesizing the images of different magnifications in the clinical stage. Hindawi 2022-07-21 /pmc/articles/PMC9334078/ /pubmed/35909482 http://dx.doi.org/10.1155/2022/6336700 Text en Copyright © 2022 Pooja Chopra et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chopra, Pooja Junath, N. Singh, Sitesh Kumar Khan, Shakir Sugumar, R. Bhowmick, Mithun Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task |
title | Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task |
title_full | Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task |
title_fullStr | Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task |
title_full_unstemmed | Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task |
title_short | Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task |
title_sort | cyclic gan model to classify breast cancer data for pathological healthcare task |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334078/ https://www.ncbi.nlm.nih.gov/pubmed/35909482 http://dx.doi.org/10.1155/2022/6336700 |
work_keys_str_mv | AT choprapooja cyclicganmodeltoclassifybreastcancerdataforpathologicalhealthcaretask AT junathn cyclicganmodeltoclassifybreastcancerdataforpathologicalhealthcaretask AT singhsiteshkumar cyclicganmodeltoclassifybreastcancerdataforpathologicalhealthcaretask AT khanshakir cyclicganmodeltoclassifybreastcancerdataforpathologicalhealthcaretask AT sugumarr cyclicganmodeltoclassifybreastcancerdataforpathologicalhealthcaretask AT bhowmickmithun cyclicganmodeltoclassifybreastcancerdataforpathologicalhealthcaretask |