Cargando…
Research on Anomaly Identification and Screening and Metallogenic Prediction Based on Semisupervised Neural Network
This paper firstly introduces the background of the research on neural network and anomaly identification screening and mineralization prediction under semisupervised learning, then introduces supervised learning, semisupervised learning, unsupervised learning, and reinforcement learning, analyzes a...
Autores principales: | Zhang, Rongqing, Xi, Zhenzhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334094/ https://www.ncbi.nlm.nih.gov/pubmed/35909834 http://dx.doi.org/10.1155/2022/8745036 |
Ejemplares similares
-
Semisupervised adversarial neural networks for single-cell classification
por: Kimmel, Jacob C., et al.
Publicado: (2021) -
An Efficient Automatic Gait Anomaly Detection Method Based on Semisupervised Clustering
por: Yang, Zhenlun
Publicado: (2021) -
In situ U-Pb Dating of Calcite from the South China Antimony Metallogenic Belt
por: Luo, Kai, et al.
Publicado: (2020) -
Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the crust
por: Blanks, Daryl E., et al.
Publicado: (2020) -
A Novel Active Semisupervised Convolutional Neural Network Algorithm for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2017)