Cargando…
A Novel Fault Diagnosis Method for Denoising Autoencoder Assisted by Digital Twin
Digital twin (DT) is an important method to realize intelligent manufacturing. Traditional data-based fault diagnosis methods such as fractional-order fault feature extraction methods require sufficient data to train a diagnosis model, which is unrealistic in a dynamically changing production proces...
Autores principales: | Cai, Wenan, Zhang, Qianqian, Cui, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334121/ https://www.ncbi.nlm.nih.gov/pubmed/35909837 http://dx.doi.org/10.1155/2022/5077134 |
Ejemplares similares
-
Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Stacked Denoising Autoencoder
por: Xu, Xiaowei, et al.
Publicado: (2021) -
Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder
por: Shi, Hongmei, et al.
Publicado: (2020) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
Transformer fault diagnosis using continuous sparse autoencoder
por: Wang, Lukun, et al.
Publicado: (2016) -
Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder
por: Li, Zexin, et al.
Publicado: (2020)