Cargando…

A modular spring-loaded actuator for mechanical activation of membrane proteins

How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific m...

Descripción completa

Detalles Bibliográficos
Autores principales: Mills, A., Aissaoui, N., Maurel, D., Elezgaray, J., Morvan, F., Vasseur, J. J., Margeat, E., Quast, R. B., Lai Kee-Him, J., Saint, N., Benistant, C., Nord, A., Pedaci, F., Bellot, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334261/
https://www.ncbi.nlm.nih.gov/pubmed/35902570
http://dx.doi.org/10.1038/s41467-022-30745-2
_version_ 1784759064323948544
author Mills, A.
Aissaoui, N.
Maurel, D.
Elezgaray, J.
Morvan, F.
Vasseur, J. J.
Margeat, E.
Quast, R. B.
Lai Kee-Him, J.
Saint, N.
Benistant, C.
Nord, A.
Pedaci, F.
Bellot, G.
author_facet Mills, A.
Aissaoui, N.
Maurel, D.
Elezgaray, J.
Morvan, F.
Vasseur, J. J.
Margeat, E.
Quast, R. B.
Lai Kee-Him, J.
Saint, N.
Benistant, C.
Nord, A.
Pedaci, F.
Bellot, G.
author_sort Mills, A.
collection PubMed
description How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific mechanoreceptors on cell membranes without laborious and repetitive trials. To overcome these challenges we introduce the Nano-winch, a robust, easily assembled, programmable DNA origami-based molecular actuator. The Nano-winch is designed to manipulate multiple mechanoreceptors in parallel by exerting fine-tuned, low- piconewton forces in autonomous and remotely activated modes via adjustable single- and double-stranded DNA linkages, respectively. Nano-winches in autonomous mode can land and operate on the cell surface. Targeting the device to integrin stimulated detectable downstream phosphorylation of focal adhesion kinase, an indication that Nano-winches can be applied to study cellular mechanical processes. Remote activation mode allowed finer extension control and greater force exertion. We united remotely activated Nano-winches with single-channel bilayer experiments to directly observe the opening of a channel by mechanical force in the force responsive gated channel protein, BtuB. This customizable origami provides an instrument-free approach that can be applied to control and explore a diversity of mechanotransduction circuits on living cells.
format Online
Article
Text
id pubmed-9334261
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93342612022-07-30 A modular spring-loaded actuator for mechanical activation of membrane proteins Mills, A. Aissaoui, N. Maurel, D. Elezgaray, J. Morvan, F. Vasseur, J. J. Margeat, E. Quast, R. B. Lai Kee-Him, J. Saint, N. Benistant, C. Nord, A. Pedaci, F. Bellot, G. Nat Commun Article How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific mechanoreceptors on cell membranes without laborious and repetitive trials. To overcome these challenges we introduce the Nano-winch, a robust, easily assembled, programmable DNA origami-based molecular actuator. The Nano-winch is designed to manipulate multiple mechanoreceptors in parallel by exerting fine-tuned, low- piconewton forces in autonomous and remotely activated modes via adjustable single- and double-stranded DNA linkages, respectively. Nano-winches in autonomous mode can land and operate on the cell surface. Targeting the device to integrin stimulated detectable downstream phosphorylation of focal adhesion kinase, an indication that Nano-winches can be applied to study cellular mechanical processes. Remote activation mode allowed finer extension control and greater force exertion. We united remotely activated Nano-winches with single-channel bilayer experiments to directly observe the opening of a channel by mechanical force in the force responsive gated channel protein, BtuB. This customizable origami provides an instrument-free approach that can be applied to control and explore a diversity of mechanotransduction circuits on living cells. Nature Publishing Group UK 2022-07-28 /pmc/articles/PMC9334261/ /pubmed/35902570 http://dx.doi.org/10.1038/s41467-022-30745-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mills, A.
Aissaoui, N.
Maurel, D.
Elezgaray, J.
Morvan, F.
Vasseur, J. J.
Margeat, E.
Quast, R. B.
Lai Kee-Him, J.
Saint, N.
Benistant, C.
Nord, A.
Pedaci, F.
Bellot, G.
A modular spring-loaded actuator for mechanical activation of membrane proteins
title A modular spring-loaded actuator for mechanical activation of membrane proteins
title_full A modular spring-loaded actuator for mechanical activation of membrane proteins
title_fullStr A modular spring-loaded actuator for mechanical activation of membrane proteins
title_full_unstemmed A modular spring-loaded actuator for mechanical activation of membrane proteins
title_short A modular spring-loaded actuator for mechanical activation of membrane proteins
title_sort modular spring-loaded actuator for mechanical activation of membrane proteins
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334261/
https://www.ncbi.nlm.nih.gov/pubmed/35902570
http://dx.doi.org/10.1038/s41467-022-30745-2
work_keys_str_mv AT millsa amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT aissaouin amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT maureld amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT elezgarayj amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT morvanf amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT vasseurjj amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT margeate amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT quastrb amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT laikeehimj amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT saintn amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT benistantc amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT norda amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT pedacif amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT bellotg amodularspringloadedactuatorformechanicalactivationofmembraneproteins
AT millsa modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT aissaouin modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT maureld modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT elezgarayj modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT morvanf modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT vasseurjj modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT margeate modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT quastrb modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT laikeehimj modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT saintn modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT benistantc modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT norda modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT pedacif modularspringloadedactuatorformechanicalactivationofmembraneproteins
AT bellotg modularspringloadedactuatorformechanicalactivationofmembraneproteins