Cargando…
A modular spring-loaded actuator for mechanical activation of membrane proteins
How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific m...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334261/ https://www.ncbi.nlm.nih.gov/pubmed/35902570 http://dx.doi.org/10.1038/s41467-022-30745-2 |
_version_ | 1784759064323948544 |
---|---|
author | Mills, A. Aissaoui, N. Maurel, D. Elezgaray, J. Morvan, F. Vasseur, J. J. Margeat, E. Quast, R. B. Lai Kee-Him, J. Saint, N. Benistant, C. Nord, A. Pedaci, F. Bellot, G. |
author_facet | Mills, A. Aissaoui, N. Maurel, D. Elezgaray, J. Morvan, F. Vasseur, J. J. Margeat, E. Quast, R. B. Lai Kee-Him, J. Saint, N. Benistant, C. Nord, A. Pedaci, F. Bellot, G. |
author_sort | Mills, A. |
collection | PubMed |
description | How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific mechanoreceptors on cell membranes without laborious and repetitive trials. To overcome these challenges we introduce the Nano-winch, a robust, easily assembled, programmable DNA origami-based molecular actuator. The Nano-winch is designed to manipulate multiple mechanoreceptors in parallel by exerting fine-tuned, low- piconewton forces in autonomous and remotely activated modes via adjustable single- and double-stranded DNA linkages, respectively. Nano-winches in autonomous mode can land and operate on the cell surface. Targeting the device to integrin stimulated detectable downstream phosphorylation of focal adhesion kinase, an indication that Nano-winches can be applied to study cellular mechanical processes. Remote activation mode allowed finer extension control and greater force exertion. We united remotely activated Nano-winches with single-channel bilayer experiments to directly observe the opening of a channel by mechanical force in the force responsive gated channel protein, BtuB. This customizable origami provides an instrument-free approach that can be applied to control and explore a diversity of mechanotransduction circuits on living cells. |
format | Online Article Text |
id | pubmed-9334261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-93342612022-07-30 A modular spring-loaded actuator for mechanical activation of membrane proteins Mills, A. Aissaoui, N. Maurel, D. Elezgaray, J. Morvan, F. Vasseur, J. J. Margeat, E. Quast, R. B. Lai Kee-Him, J. Saint, N. Benistant, C. Nord, A. Pedaci, F. Bellot, G. Nat Commun Article How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific mechanoreceptors on cell membranes without laborious and repetitive trials. To overcome these challenges we introduce the Nano-winch, a robust, easily assembled, programmable DNA origami-based molecular actuator. The Nano-winch is designed to manipulate multiple mechanoreceptors in parallel by exerting fine-tuned, low- piconewton forces in autonomous and remotely activated modes via adjustable single- and double-stranded DNA linkages, respectively. Nano-winches in autonomous mode can land and operate on the cell surface. Targeting the device to integrin stimulated detectable downstream phosphorylation of focal adhesion kinase, an indication that Nano-winches can be applied to study cellular mechanical processes. Remote activation mode allowed finer extension control and greater force exertion. We united remotely activated Nano-winches with single-channel bilayer experiments to directly observe the opening of a channel by mechanical force in the force responsive gated channel protein, BtuB. This customizable origami provides an instrument-free approach that can be applied to control and explore a diversity of mechanotransduction circuits on living cells. Nature Publishing Group UK 2022-07-28 /pmc/articles/PMC9334261/ /pubmed/35902570 http://dx.doi.org/10.1038/s41467-022-30745-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Mills, A. Aissaoui, N. Maurel, D. Elezgaray, J. Morvan, F. Vasseur, J. J. Margeat, E. Quast, R. B. Lai Kee-Him, J. Saint, N. Benistant, C. Nord, A. Pedaci, F. Bellot, G. A modular spring-loaded actuator for mechanical activation of membrane proteins |
title | A modular spring-loaded actuator for mechanical activation of membrane proteins |
title_full | A modular spring-loaded actuator for mechanical activation of membrane proteins |
title_fullStr | A modular spring-loaded actuator for mechanical activation of membrane proteins |
title_full_unstemmed | A modular spring-loaded actuator for mechanical activation of membrane proteins |
title_short | A modular spring-loaded actuator for mechanical activation of membrane proteins |
title_sort | modular spring-loaded actuator for mechanical activation of membrane proteins |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334261/ https://www.ncbi.nlm.nih.gov/pubmed/35902570 http://dx.doi.org/10.1038/s41467-022-30745-2 |
work_keys_str_mv | AT millsa amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT aissaouin amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT maureld amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT elezgarayj amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT morvanf amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT vasseurjj amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT margeate amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT quastrb amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT laikeehimj amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT saintn amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT benistantc amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT norda amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT pedacif amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT bellotg amodularspringloadedactuatorformechanicalactivationofmembraneproteins AT millsa modularspringloadedactuatorformechanicalactivationofmembraneproteins AT aissaouin modularspringloadedactuatorformechanicalactivationofmembraneproteins AT maureld modularspringloadedactuatorformechanicalactivationofmembraneproteins AT elezgarayj modularspringloadedactuatorformechanicalactivationofmembraneproteins AT morvanf modularspringloadedactuatorformechanicalactivationofmembraneproteins AT vasseurjj modularspringloadedactuatorformechanicalactivationofmembraneproteins AT margeate modularspringloadedactuatorformechanicalactivationofmembraneproteins AT quastrb modularspringloadedactuatorformechanicalactivationofmembraneproteins AT laikeehimj modularspringloadedactuatorformechanicalactivationofmembraneproteins AT saintn modularspringloadedactuatorformechanicalactivationofmembraneproteins AT benistantc modularspringloadedactuatorformechanicalactivationofmembraneproteins AT norda modularspringloadedactuatorformechanicalactivationofmembraneproteins AT pedacif modularspringloadedactuatorformechanicalactivationofmembraneproteins AT bellotg modularspringloadedactuatorformechanicalactivationofmembraneproteins |