Cargando…

Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework

Chemical pollution threatens human health and ecosystem sustainability. Persistent organic pollutants (POPs) like per- and polyfluoroalkyl substances (PFAS) are expensive to clean up once emitted. Innovative and synergistic strategies are urgently needed, yet process integration and cost-effectivene...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jinghao, Li, Xiaohan, Da, Yabin, Yu, Jiali, Long, Bin, Zhang, Peng, Bakker, Christopher, McCarl, Bruce A., Yuan, Joshua S., Dai, Susie Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334262/
https://www.ncbi.nlm.nih.gov/pubmed/35902555
http://dx.doi.org/10.1038/s41467-022-31881-5
_version_ 1784759064580849664
author Li, Jinghao
Li, Xiaohan
Da, Yabin
Yu, Jiali
Long, Bin
Zhang, Peng
Bakker, Christopher
McCarl, Bruce A.
Yuan, Joshua S.
Dai, Susie Y.
author_facet Li, Jinghao
Li, Xiaohan
Da, Yabin
Yu, Jiali
Long, Bin
Zhang, Peng
Bakker, Christopher
McCarl, Bruce A.
Yuan, Joshua S.
Dai, Susie Y.
author_sort Li, Jinghao
collection PubMed
description Chemical pollution threatens human health and ecosystem sustainability. Persistent organic pollutants (POPs) like per- and polyfluoroalkyl substances (PFAS) are expensive to clean up once emitted. Innovative and synergistic strategies are urgently needed, yet process integration and cost-effectiveness remain challenging. An in-situ PFAS remediation system is developed to employ a plant-derived biomimetic nano-framework to achieve highly efficient adsorption and subsequent fungal biotransformation synergistically. The multiple component framework is presented as Renewable Artificial Plant for In-situ Microbial Environmental Remediation (RAPIMER). RAPIMER exhibits high adsorption capacity for the PFAS compounds and diverse adsorption capability toward co-contaminants. Subsequently, RAPIMER provides the substrates and contaminants for in situ bioremediation via fungus Irpex lacteus and promotes PFAS detoxification. RAPIMER arises from cheap lignocellulosic sources, enabling a broader impact on sustainability and a means for low-cost pollutant remediation.
format Online
Article
Text
id pubmed-9334262
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93342622022-07-30 Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework Li, Jinghao Li, Xiaohan Da, Yabin Yu, Jiali Long, Bin Zhang, Peng Bakker, Christopher McCarl, Bruce A. Yuan, Joshua S. Dai, Susie Y. Nat Commun Article Chemical pollution threatens human health and ecosystem sustainability. Persistent organic pollutants (POPs) like per- and polyfluoroalkyl substances (PFAS) are expensive to clean up once emitted. Innovative and synergistic strategies are urgently needed, yet process integration and cost-effectiveness remain challenging. An in-situ PFAS remediation system is developed to employ a plant-derived biomimetic nano-framework to achieve highly efficient adsorption and subsequent fungal biotransformation synergistically. The multiple component framework is presented as Renewable Artificial Plant for In-situ Microbial Environmental Remediation (RAPIMER). RAPIMER exhibits high adsorption capacity for the PFAS compounds and diverse adsorption capability toward co-contaminants. Subsequently, RAPIMER provides the substrates and contaminants for in situ bioremediation via fungus Irpex lacteus and promotes PFAS detoxification. RAPIMER arises from cheap lignocellulosic sources, enabling a broader impact on sustainability and a means for low-cost pollutant remediation. Nature Publishing Group UK 2022-07-28 /pmc/articles/PMC9334262/ /pubmed/35902555 http://dx.doi.org/10.1038/s41467-022-31881-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Li, Jinghao
Li, Xiaohan
Da, Yabin
Yu, Jiali
Long, Bin
Zhang, Peng
Bakker, Christopher
McCarl, Bruce A.
Yuan, Joshua S.
Dai, Susie Y.
Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework
title Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework
title_full Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework
title_fullStr Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework
title_full_unstemmed Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework
title_short Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework
title_sort sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334262/
https://www.ncbi.nlm.nih.gov/pubmed/35902555
http://dx.doi.org/10.1038/s41467-022-31881-5
work_keys_str_mv AT lijinghao sustainableenvironmentalremediationviabiomimeticmultifunctionallignocellulosicnanoframework
AT lixiaohan sustainableenvironmentalremediationviabiomimeticmultifunctionallignocellulosicnanoframework
AT dayabin sustainableenvironmentalremediationviabiomimeticmultifunctionallignocellulosicnanoframework
AT yujiali sustainableenvironmentalremediationviabiomimeticmultifunctionallignocellulosicnanoframework
AT longbin sustainableenvironmentalremediationviabiomimeticmultifunctionallignocellulosicnanoframework
AT zhangpeng sustainableenvironmentalremediationviabiomimeticmultifunctionallignocellulosicnanoframework
AT bakkerchristopher sustainableenvironmentalremediationviabiomimeticmultifunctionallignocellulosicnanoframework
AT mccarlbrucea sustainableenvironmentalremediationviabiomimeticmultifunctionallignocellulosicnanoframework
AT yuanjoshuas sustainableenvironmentalremediationviabiomimeticmultifunctionallignocellulosicnanoframework
AT daisusiey sustainableenvironmentalremediationviabiomimeticmultifunctionallignocellulosicnanoframework